Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(34): 23989-23997, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158716

RESUMEN

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3-x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3-x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.

2.
Adv Mater ; : e2310668, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101291

RESUMEN

Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO3, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO3/LaTiO3 superlattice, where an interlayer electron transfer has been observed from LaTiO3 into LaNiO3 leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO3/LaTiO3 interface is presented. As the magnetism is purely interfacial, a single LaNiO3/LaTiO3 interface can essentially behave as an atomically thin strongly-correlated quasi-2D antiferromagnet, potentially allowing its technological utilization in advanced spintronic devices. Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an S→1 spin state instead.

3.
Nat Commun ; 15(1): 5576, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956078

RESUMEN

Strongly correlated materials respond sensitively to external perturbations such as strain, pressure, and doping. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be enhanced via only ~ 1% compressive strain-tuning with the root of such enhancement still being elusive. Using resonant inelastic x-ray scattering (RIXS), we investigate the magnetic excitations in infinite-layer PrNiO2 thin films grown on two different substrates, namely SrTiO3 (STO) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) enforcing different strain on the nickelates films. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the bandwidth of spin excitations of the parent compounds is similar under strain while Tc in the doped ones is not, and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates.

4.
PNAS Nexus ; 3(4): pgae100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736471

RESUMEN

Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with resonant inelastic X-ray scattering the magnon excitations of this interfacial CuO2 layer. In particular, we show that the underlying antiferromagnetic exchange interaction at the interface is strongly suppressed to J≈70 meV, when compared with J≈130 meV for the CuO2 layers away from the interface. Moreover, we observe an anomalous momentum dependence of the intensity of the interfacial magnon mode and show that it suggests that the antiferromagnetic order is accompanied by a particular kind of orbital order that yields a so-called altermagnetic state. Such a 2D altermagnet has recently been predicted to enable new spintronic applications and superconducting proximity effects.

5.
BMC Genomics ; 25(1): 492, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760719

RESUMEN

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Asunto(s)
Brassica napus , Filogenia , Proteínas de Plantas , Brassica napus/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta , Sintenía , Perfilación de la Expresión Génica
6.
Plant Biotechnol J ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38817148

RESUMEN

Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.

7.
Nat Mater ; 23(6): 818-825, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429520

RESUMEN

Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.

8.
Nat Mach Intell ; 6(2): 180-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404481

RESUMEN

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

9.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394564

RESUMEN

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

10.
Phys Rev Lett ; 132(5): 056002, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364146

RESUMEN

We investigated the high energy spin excitations in electron-doped La_{2-x}Ce_{x}CuO_{4}, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at Q_{∥}=(0.6π,0) and (0.9π,0) along the (1 0) direction. Our results show that, for doping level x from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss the implication of our results in connection with the evolution of the electron correlation strength in this system.

11.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166550

RESUMEN

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Latencia en las Plantas/genética , Perfilación de la Expresión Génica , Filogenia , Brassica rapa/genética , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Adv Mater ; 36(3): e2307515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37830432

RESUMEN

The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.

13.
Nat Commun ; 14(1): 7198, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938250

RESUMEN

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.

14.
Aging (Albany NY) ; 15(15): 7741-7759, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37552140

RESUMEN

Disulfidptosis is a new cell death model caused by accumulating intracellular disulfides bonding to actin cytoskeleton proteins. This study aimed to investigate the expression and prognostic value of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD). The data of expression profiles and scRNA-seq were collected from TCGA and GEO databases. The different expressions of DRGs between normal and LUAD tissues were compared. The LASSO analysis and multivariate Cox regression analysis were utilized to develop a DRGs model for the prognosis evaluation in LUAD. The model's predictive accuracy was evaluated with the area under the receiver operating characteristic curve (AUC) and C-index. Survival analysis, univariate and multivariate Cox regression analysis were used to assessing the predictive value of the DRGs model. ScRNA-seq data were analyzed with "Seurat" and "Monocle 2" packages. There were significant differences in 22 DRGs between normal and tumor tissues. A model with five DRGs (ACTB, FLNB, NCKAP1, SLC3A2, SLC7A11) was constructed. The AUC and C-index of the model were significantly higher than that based on clinical parameters. Survival analysis, univariate and multivariate Cox regression analysis demonstrated risk score was an independent prognostic predictor. In the scRNA-seq study, we identified 14 clusters and 11 cell types. Clusters 2, 8, and 13 were annotated into Epithelial cells. SLC7A11 and SLC3A2, NCKAP1 and FLNB, ACTB expressed most abundantly in Epithelial cells, Endothelial cells, Naive CD4 T, respectively. We explored the expression of DRGs in LUAD and constructed a predictive DRGs model, which was stable and reliable for predicting LUAD prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Células Endoteliales , Pronóstico , Adenocarcinoma del Pulmón/genética , Células Epiteliales , Neoplasias Pulmonares/genética
15.
Sci Adv ; 9(29): eadg3710, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467326

RESUMEN

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.

16.
Nature ; 618(7967): 946-950, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286603

RESUMEN

The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology1-3. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties4-6. Here we show experimental proof of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X-rays. Using the prototypical chiral material quartz, we demonstrate that circularly polarized X-rays, which are intrinsically chiral, couple to chiral phonons at specific positions in reciprocal space, allowing us to determine the chiral dispersion of the lattice modes. Our experimental proof of chiral phonons demonstrates a new degree of freedom in condensed matter that is both of fundamental importance and opens the door to exploration of new emergent phenomena based on chiral bosons.

17.
Nat Commun ; 14(1): 2749, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173301

RESUMEN

A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.

19.
Nature ; 615(7950): 50-55, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859583

RESUMEN

The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1-3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4-9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x ≅ 0.2-0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H- occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS-Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.

20.
Sci Total Environ ; 858(Pt 3): 160073, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356731

RESUMEN

Hydrogen sulfide (H2S) is a gaseous mediator that plays versatile roles in plant growth and stress responses. However, the regulatory functions of H2S in plant responses to aluminum (Al) stress remain elusive. We observed that application of 20 µM of NaHS (H2S donor) or 0.2 mM of hypotaurine (HT, H2S scavenger) significantly mitigated the inhibition of rapeseed root growth caused by Al stress (150 µM). Exposure to Al for 6 h induced significant H2S accumulation and high levels were maintained thereafter, owing to the elevation of cysteine (83.73 %), L-cysteine desulfhydrase (LCD, 92.32 %), and cyanoalanine synthase (CAS, 11.23 %), and the inhibition of O-Acetyl-l-serine (thiol) lyase (OAS-TL, 15.13 %). Addition of HT significantly scavenged the prolonged H2S accumulation caused by Al stress. Exogenous NaHS maintained the H2S homeostasis through increasing OAS-TL activity (34.99 %) and inhibiting LCD activity (25.72 %), and cysteine level (39.53 %). Moreover, exogenous NaHS mitigated oxidative damage by enhancing antioxidant enzyme activity (SOD 26.27 %, POD 28.62 %, CAT 400.5 % and APX 92.68 %) and proline content (19.85 %). It also decreased root cell wall Al accumulation (20.52 %) by decreasing PME activity (24.64 %) and facilitating pectin methylation (16.74 %). Similar alleviative effects were observed when HT was added. These results suggest that H2S functions differential roles in Al stress response in rapeseed seedlings, depending on its local concentration and duration. Prolonged high H2S emissions might contribute to Al toxicity, while moderate exogenous H2S improves Al tolerance through controlling H2S and ROS accumulation and enhancing Al exclusion through replenishing antioxidant reservoirs and facilitating pectin methylation. It is therefore important that further study investigates how to orchestrate endogenous H2S levels and improve plant stress tolerance.


Asunto(s)
Brassica napus , Aluminio/toxicidad , Cisteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...