Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
3.
Sci Total Environ ; 887: 164034, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37178840

RESUMEN

Dam construction is regarded as the greatest anthropogenic disturbance in aquatic ecosystems, and it promotes denitrification, through which large N2O emissions occur. However, the effect of dams on N2O producers and other N2O-reducing microorganisms (especially for nosZ II), and the associated denitrification rates remain poorly understood. This study systematically investigated the spatial variation of potential denitrification rates in dammed river sediments in winter and summer and the microbial processes driving N2O production and reduction. Sediments in the transition zone of dammed rivers were found to be critical for N2O emission potential, with lower potential denitrification rate and N2O production rate in winter than in summer. In dammed river sediments, the dominant N2O-producing microorganisms and N2O-reducers were nirS-harboring bacteria and nosZ I-harboring bacteria, respectively. Diversity analysis showed that diversity of N2O-producing did not differ significantly between upstream and downstream sediments, whereas the population size and diversity of N2O-reducing microbial communities in upstream sediments significantly decreased, leading to biological homogenization. Further ecological network analysis revealed that the ecological network of nosZ II microbes was more complex than that of nosZ I microbes, and both exhibited more cooperation in the downstream sediments than in the upstream sediments. Mantel analysis showed that the potential N2O production rate was mainly influenced by electrical conductivity (EC), NH4+, and TC content, and that higher nosZ II/nosZ I ratios contributed to improved N2O sinks in dammed river sediments. Moreover, the Haliscomenobacter genus from the nosZ II-type community in the downstream sediments contributed significantly to N2O reduction. Collectively, this study elucidates the diversity and community distribution of nosZ-type denitrifying microorganisms influenced by dams, and also highlights the non-negligible role played by nosZ II-containing microbial groups in mitigating N2O emissions from dammed river sediments.


Asunto(s)
Desnitrificación , Microbiota , Óxido Nitroso , Bacterias , Ríos/química , Microbiología del Suelo
4.
Sci Total Environ ; 864: 161167, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572300

RESUMEN

The recent discovery of complete ammonia oxidizers (comammox) has fundamentally changed our understanding of nitrification. However, studies on the occurrence and activity of comammox bacteria and their contribution to nitrification remain unclear. Here, we investigated the abundance, activity, and diversity of comammox bacteria and their contribution to nitrification in sediments from dammed rivers in winter and summer. Our results indicated that comammox clade A was ubiquitous in all sediment samples and the community structure in comammox varied between the upper and lower reaches, but not on the time scale (winter and summer). Comammox activity in the dammed river sediments in summer was prominently higher than in winter (summer: 1.08 ±â€¯0.52; winter: 0.197 ±â€¯0.148 mg N kg-1 day-1). Furthermore, the activity of comammox bacteria in summer appeared higher in the vicinity of the dammed river and in the Sanjiang estuary, which is located downstream of the dammed river. The activity of ammonia-oxidizing bacteria (AOB) (0.77 ±â€¯0.478 mg N kg-1 day-1) was higher compared to comammox (0.639 ±â€¯0.588 mg N kg-1 day-1) and ammonia-oxidizing archaea (AOA) (0.026 ±â€¯0.022 mg N kg-1 day-1) in both winter and summer. In terms of contribution to the nitrification process, AOB (winter: 67.13 ±â€¯12.21 %; summer: 50.57 ±â€¯16.14 %) outperformed comammox (winter: 28.59 ±â€¯12.51 %; summer: 48.38 ±â€¯16.62 %) and AOA (winter: <7.39 %; summer: <2.09 %). These findings indicated that the nitrification process in dammed river sediments was mainly dominated by AOB. Additionally, comammox activity was significantly affected by temperature and NH4+, suggesting that these variables were key determinants of the niche partitioning of comammox. Collectively, our findings provide novel perspectives into the widespread distribution and contribution of comammox to nitrification in dammed river ecosystems, thus broadening our understanding of the nitrification processes.


Asunto(s)
Betaproteobacteria , Nitrificación , Ecosistema , Amoníaco , Oxidación-Reducción , Filogenia , Microbiología del Suelo , Bacterias , Archaea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...