Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Chin Med ; : 1-18, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38879746

RESUMEN

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.

2.
Food Chem ; 425: 136486, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267785

RESUMEN

An imbalance of l-tryptophan (l-Trp), a basic component of a healthy diet, is harmful to human health. Traditional methods for detecting l-Trp have many limitations. To correct a deficiency or excess of l-Trp in human diets, it is necessary to develop a novel method that is rapid, low-cost, and high-sensitivity. Herein, a molecularly imprinted polysaccharide electrochemical sensor termed MIP/CS/MWCNTs/GCE (molecularly imprinted polymer/chitosan/multiwalled carbon nanotubes/glassy carbon electrode) targeting l-Trp was first constructed on a glassy carbon electrode, which was modified with multiwalled carbon nanotubes and chitosan using bifunctional monomers. The MIP/CS/MWCNTs/GCE obtained a wide linear range (1-300 µM) for detecting l-Trp and accurately detected the proportion of l-Trp in mixtures of Trp enantiomers. In milk samples, the spiked recoveries of l-Trp were 86.50 to 99.65%. The MIP/CS/MWCNTs/GCE electrochemical sensor possessed good recognition and detection performance for l-Trp and has promising potential for practical application.


Asunto(s)
Quitosano , Impresión Molecular , Nanotubos de Carbono , Humanos , Impresión Molecular/métodos , Polímeros , Triptófano , Técnicas Electroquímicas/métodos , Electrodos , Dieta , Límite de Detección
3.
Mikrochim Acta ; 190(4): 118, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36884097

RESUMEN

A novel molecular-imprinted polymer (MIP)-based enzyme-free biosensor was created for the selective detection of glycoprotein transferrin (Trf). For this purpose, MIP-based biosensor for Trf was prepared by electrochemical co-polymerization of novel hybrid monomers 3-aminophenylboronic acid (M-APBA) and pyrrole on a glassy carbon electrode (GCE) modified with carboxylated multi-walled carbon nanotubes (cMWCNTs). Hybrid epitopes of Trf (C-terminal fragment and glycan) have been selected as templates. The produced sensor exhibited great selective recognition ability toward Trf under optimal preparation conditions, offering good analytical range (0.125-1.25 µM) with a detection limit of 0.024 µM. The proposed hybrid epitope in combination with hybrid monomer-mediated imprinting strategy was successfully applied to detect Trf in spiked human serum samples, with recoveries and relative standard deviations ranging from 94.7 to 106.0% and 2.64 to 5.32%, respectively. This study provided a reliable protocol for preparing hybrid epitopes and monomers-mediated MIP for the synergistic and effective determination of glycoprotein in complicated biological samples.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Nanotubos de Carbono , Humanos , Polímeros , Epítopos , Impresión Molecular/métodos , Transferrina , Glicoproteínas , Técnicas Biosensibles/métodos
4.
Am J Chin Med ; 50(8): 2085-2102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250390

RESUMEN

The development of effective drug-loaded dressings has been considered a hot research topic for biomedical therapeutics, including the use of botanical compounds. For wound healing, adequate dressings can provide a good microenvironment for drug release, such as lidocaine. Biological macromolecular materials such as alginate show excellent properties in wound management. This study involves the preparation and evaluation of biocompatible multilayered-structure microspheres composed of chitosan, porous gelatin, and calcium alginate microspheres. The multilayered structure microspheres were named chitosan@ porous gelatin@ calcium alginate microspheres (CPAMs) and the drugs were rapidly released by the volume expansion of the calcium alginate microspheres. The in vitro release curve revealed that the peak release of lidocaine from CPAMs was reached within 18[Formula: see text]min. After 21[Formula: see text]min, the remaining lidocaine was then slowly released, and the active drug release was converted to a passive drug release phase. The initial release effect of lidocaine was much better than that reported in the published studies. Additionally, blood coagulation experiments showed that CPAMs coagulated blood in 60[Formula: see text]s, and the blood liquidity of the CPAMs group was worse than that of the woundplast group. Therefore, the coagulation characteristics of CPAMs were superior to the commonly used woundplast containing lidocaine healing gel. These study outcomes indicated that the CPAMs acted as fast-release dressings for faster pain control and better coagulation properties.


Asunto(s)
Alginatos , Quitosano , Humanos , Alginatos/química , Microesferas , Lidocaína , Quitosano/química , Gelatina , Vendajes , Dolor
5.
Anal Bioanal Chem ; 414(7): 2481-2491, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35048137

RESUMEN

A novel deep eutectic solvent-magnetic molecularly imprinted polymer (DES-MMIP) for the specific removal of oxalic acid (OA) was prepared by an environmentally friendly deep eutectic solvent, consisting of betaine, citric acid, and glycerol, which acted as the functional monomer for polymerization. The structure and morphology of DES-MMIPs were studied by X-ray diffraction, scanning and transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. DES-MMIPs had a core-shell structure, with magnetic iron oxide as the core, and showed good thermal stability and high adsorption capacity (18.73 mg/g) for OA. The adsorption process of OA by DES-MMIPs followed the pseudo-second-order kinetic model and Langmuir isotherm model. DES-MMIPs had significant selectivity for OA and their imprinting factor was 3.26. When applied to real samples, high performance liquid chromatography analysis showed that DES-MMIPs could remove OA from both spinach and blood serum. These findings provide potential methods for removal of OA from vegetables and for specific removal of OA in renal dialysis.


Asunto(s)
Impresión Molecular , Adsorción , Disolventes Eutécticos Profundos , Humanos , Impresión Molecular/métodos , Ácido Oxálico , Solventes/química , Verduras
6.
Anal Chim Acta ; 1186: 339117, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756250

RESUMEN

Transferrin (Trf) is a new type of active drug targeting carrier and disease biomarker that regulates the balance of iron ions in human body. The recognition and isolation of Trf is of great significance for disease diagnosis and treatment. Thus, a new type of magnetic dual affinity epitope molecularly imprinted polymer coated on Fe3O4 nanoparticles (Fe3O4@DEMIP) was successfully prepared for specific recognition of Trf. C-terminal nonapeptide and Trf glycan were selected as bi-epitope templates for metal chelation and boron affinity immobilization, respectively. 4-vinylphenylboric acid (4-VP), N-isopropyl acrylamide (NIPAM) and zinc acrylic were used as functional monomers. Results showed that Fe3O4@DEMIP exhibited excellent specific recognition ability adsorption capacity toward Trf, with an adsorption of 43.96 mg g-1 (RSD = 3.28%) and a more satisfactory imprinting factor (about 6.60) than that of other reported imprinting methods. In addition, Fe3O4@DEMIP displayed pH, temperature and magnetic sensitivity properties to realize temperature and pH-controlled recognition and release of target proteins and magnetic rapid separation. Furthermore, the Fe3O4@DEMIP coupled with high-performance liquid chromatography (HPLC) analysis was successfully used for specific recognition of Trf in biosamples. This study provides a reliable protocol for preparing metal chelation and boron affinity dual affinity bi-epitope molecularly imprinted polymers for synergistic and efficient recognition of biomacromolecules in the complex biological systems.


Asunto(s)
Impresión Molecular , Polímeros , Adsorción , Epítopos , Humanos , Transferrina
7.
J Pharm Biomed Anal ; 192: 113661, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053507

RESUMEN

Paclitaxel (PTX) is a powerful anticancer natural product, with its separation and purification having been widely studied. In this work, new molecular imprinted polymers (MIPs) using deep eutectic solvents (DESs) with different molar ratios were prepared as functional monomers. These were then used as adsorbents in solid phase extraction (SPE) for the separation of PTX from its structural analogs. The polymers were characterized by energy disperive X-rays (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FT-IR). The results suggested that the formative regular DES-MIPs had an even pore-size distribution and a large specific surface area. The dynamic adsorption and static adsorption showed that the DES-MIPs had excellent adsorption performance, with a maximum adsorption capacity and optimum adsorption time of 87.08 mg/g and 180 min, respectively. The selective adsorption experiments showed that the material had outstanding selectivity, and the maximum selectivity factor was 6.20. For stability, after six consecutive adsorption and desorption cycles, the DES-MIPs maintained the perfect stability and reusability. Furthermore, the fabricated SPE column was successfully utilized for extracting and eluting PTX. This study provides a reliable protocol for the separation and purification PTX from its structural analogs and the DES-MIPs materials have excellent potential application value in pharmaceutical industry.


Asunto(s)
Impresión Molecular , Adsorción , Polímeros Impresos Molecularmente , Paclitaxel , Extracción en Fase Sólida , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
8.
Talanta ; 219: 121283, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887173

RESUMEN

In this report, a non-toxic Dual Template Molecularly Imprinted Polymers (DMIPs) was synthesized with quercetin and schisandrin b as template molecules, using deep-eutectic solvents as functional monomers for the first time. The DMIPs were used to efficiently and simultaneously enrich quercetin and schisandrin b from the mixed crude extracts of penthorum and schisandra. The results indicated that the DMIPs exhibited rapid adsorption kinetics (80 min for adsorption equilibrium) and high selectivity. The largest adsorbing capacities to quercetin and schisandrin b were 23.58 mg/g and 41.64 mg/g, respectively. After presaturation with quercetin and schisandrin b, the nontoxic saturated DMIPs were fed to the mice. Blood samples of the mice were taken and both quercetin and schisandrin b were successfully detected. The pharmacokinetics of quercetin and schisandrin b were similar to reports in the literature where mice were directly fed with botanicals. Our study provides a reliable protocol such that DMIPs can be used to separate and enrich several target molecules simultaneously from complex biological systems. Our findings suggested that the DMIPs have potential application as a drug delivery system of compound herbal formulas.


Asunto(s)
Impresión Molecular , Adsorción , Animales , Ratones , Polímeros Impresos Molecularmente , Polímeros , Extracción en Fase Sólida
9.
Talanta ; 219: 121350, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887078

RESUMEN

In this work, efficient, sensitive bifunctional-monomer chitosan magnetic molecularly imprinted polymers (BCMMIPs) were fabricated and successfully applied to concentrate the metabolites of Epimedium flavonoids in rat testis and bone that were later analyzed using UPLC-Q-TOF-MS. Using chitosan and methacrylic acid as co-functional monomers, BCMMIPs exhibited a large adsorption capacity (7.60 mg/g), fast kinetics (60 min), and good selectivity. Chitosan is bio-compatible and non-toxic, and methacrylic acid provides multiple hydrogen bond donors. The BCMMIPs were injected into rat testis to specifically enrich the total flavonoid metabolites in vivo and were used to extract metabolites from bone in vitro. The results showed that the BCMMIPs coupled with UPLC-Q-TOF-MS successfully identified 28 compounds from testis and 18 compounds from bone, including 19 new compounds. This study provided a reliable protocol for the concentration of metabolites from complex biological samples, and several new metabolites of Epimedium flavonoids were found in vivo and in vitro.


Asunto(s)
Quitosano , Epimedium , Impresión Molecular , Adsorción , Animales , Glicósidos , Fenómenos Magnéticos , Masculino , Polímeros Impresos Molecularmente , Polímeros , Ratas , Extracción en Fase Sólida
10.
Food Chem ; 326: 126969, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32438229

RESUMEN

Biocompatible magnetic molecularly imprinted polymers (BMMIPs) were prepared with Zein for the first time, and were used to enrich tetracycline compounds selectively. Innovative combination of BMMIPs and electrochemistry to obtain lower detection line to satisfy industrial detection demands. Using Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3O4 particles. The scanning electron microscope, transmission electron microscope and X-ray diffraction technologies were used to characterize BMMIPs. Through optimization, BMMIPs attained large adsorption capacity (236.40 mg/g) with fast kinetics (40 min) and followed the Langmuir isotherm and pseudo-second-order kinetic models. BMMIPs had good recognition ability, the selective factors of oxytetracycline, chlortetracycline, doxycycline were 4.78, 4.23, and 3.39, respectively. Excellent linearity was attained in the range of 0.025-500 µg/mL, with low detection limits and low quantitation limits of 0.025 and 0.083 µg/mL. According to our exploring, BMMIPs was ideal materials for enrichment of tetracycline in complex biological samples.


Asunto(s)
Materiales Biocompatibles/química , Contaminación de Alimentos/análisis , Leche/química , Impresión Molecular/métodos , Tetraciclinas/análisis , Adsorción , Animales , Antibacterianos/análisis , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Técnicas Electroquímicas , Análisis de los Alimentos/métodos , Límite de Detección , Fenómenos Magnéticos , Nanopartículas de Magnetita/química , Polímeros/química , Tetraciclina/análisis , Tetraciclina/química , Tetraciclina/aislamiento & purificación , Tetraciclinas/química , Tetraciclinas/aislamiento & purificación , Difracción de Rayos X , Zeína/química
11.
J Sep Sci ; 43(6): 1173-1182, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31919992

RESUMEN

Curcumin widely exists in food, and rapid selective and accurate detection of curcumin have great significance in chemical industry. In this experiment, a new magnetic biocompatibility molecularly imprinted polymer was prepared with nontoxic and biocompatible Zein to adsorb curcumin selectively. The polymer has high biocompatibility, good adsorption capacity, and specific adsorption for curcumin. Combined with portable electrochemical workstations, the polymer can be used to detect curcumin rapidly and cost-effectively. Using curcumin as a template and Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3 O4 particles for solid phase extraction. The experimental results showed that the polymer reached large adsorption capacity (32.12 mg/g) with fast kinetics (20 min). The adsorption characteristic of the polymer followed the Langmuir isotherm and pseudo-second-order kinetic models. Hexacyanoferrate was used as electrochemical probe to generate signals, and the linear range was 5-200 µg/mL for measuring curcumin. The experimental analysis showed that the polymer was an ideal material for selective accumulation of curcumin from complex samples. This approach has been successfully applied to the determination of curcumin in food samples with electrochemical detection, indicating that this is a feasible and practical technique.


Asunto(s)
Materiales Biocompatibles/química , Curcumina/análisis , Técnicas Electroquímicas , Nanopartículas de Magnetita/química , Impresión Molecular , Polímeros/química , Adsorción , Tamaño de la Partícula , Propiedades de Superficie
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(5): 684-687, 2019 Sep.
Artículo en Chino | MEDLINE | ID: mdl-31762238

RESUMEN

OBJECTIVE: To explore the protective effects of quercetin (QE) on triptolide (TP) induced liver injury and the relevant mechanism. METHODS: Forty C57BL/6 mice were equally divided into 4 groups, control group, TP model group, 20 mg/kg QE treatment group and 80 mg/kg QE treatment group randomly. The 20 mg/kg and 80 mg/kg QE groups were gastrointestinal administration with QE at the dose of 0.2 mL/10 g for 10 d, twice daily, while other groups were administrated with equivalent normal saline. Four hours post the last dose, animals were gastrointestinal administered with TP at a dose of 500 µg/kg per mouse, except for NS control. All the mice were sacrificed 22 h later, blood and liver tissue samples were collected. The pathologic change of liver tissue was detected by HE staining. The level of aminotransferase (AST) and aspartate alanine aminotransferase (ALT) in serum, and the level of glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) in liver tissue homogenates were detected using the commercial kits. The level of interleukin (IL)-17, IL-10 and IL-6 in liver tissue homogenates was measured by ELISA. Hepatic expression of Toll-like receptor 4 (TLR4) was detected by Western blot. RESULTS: Compared with the control group, in the TP model group, hepatic lobule structure atrophied and even disappeared, hepatic cell necrosis and inflammatory cell infiltration are obvious. Additionally, in TP model group, serum ALT, AST and MDA levels were significantly increased, SOD and GSH levels were decreased, IL-6 and IL-17 levels were increased, IL-10 levels were decreased, and TLR4 protein levels were increased (P < 0.05). Compared with the TP model group, liver tissue injury and inflammatory cell infiltration were reduced in the QE group, and serum levels of ALT, AST, MDA, IL-6 and IL-17 were all decreased. TLR4 expression was down-regulated (P < 0.05) in both QE groups, and the decease levle was more significant in the high-dose QE group (P < 0.05, compared with the low-dose QE group). CONCLUSION: Quercetin can reduce TP-induced liver injury by reducing oxidative damage, promoting antioxidant and regulating cytokine secretion.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Quercetina/farmacología , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Diterpenos , Compuestos Epoxi , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fenantrenos , Distribución Aleatoria
13.
Nat Prod Res ; 33(9): 1243-1250, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29683359

RESUMEN

Two flavone di-C-glycosides, a pair of isomers, were isolated from Scutellaria baicalensis. The structures of compounds 1 and 2 were elucidated by means of physical data, including 1D and 2D NMR and HR-ESI-MS. Supporting theoretical calculations of the compound conformational landscape has also been conducted for geometry optimization. This is the first report of the natural occurrence of ß-furanoarabinoside. In addition, the effects of compounds 1 and 2 on NO, pro-inflammatory cytokines, PGE2 and COX-2 levels were measured in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. The pair of isomers exhibited significant inhibitory effects on inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Flavonas/aislamiento & purificación , Scutellaria baicalensis/química , Animales , Dinoprostona/biosíntesis , Flavonas/química , Flavonas/farmacología , Interleucina-6/biosíntesis , Lipopolisacáridos/farmacología , Ratones , Células RAW 264.7
14.
Artículo en Inglés | MEDLINE | ID: mdl-30529494

RESUMEN

In this work, surface molecularly imprinted polymers (SMIPs) were prepared as a specific sorbent to remove the limonin from the lemon juice for the first time, and then the MIPs containing limonin were directly made into a water-soluble gel to treat inflammation of mice. The resulting polymers were characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectrometer spectra. And the polymerization conditions and adsorption performances of the resultant nanomaterials were further investigated in detail. Results showed that the MIPs have higher adsorption capacity (27.72 mg/g) compared with surface molecularly non-imprinted polymers (NIPs) (8.12 mg/g). The selectivity experiment indicated that the polymers had excellent selective recognition for limonin and the selectivity factors were calculated as 2.75 and 1.83 for nomilin and obakunone, respectively. The MIPs were successfully used as adsorbent for selectively removing limonin from lemon juice and the MIPs extracted almost all the limonin from lemon juice according to the HPLC results. Furthermore, the MIPs with limonin were processed into water-soluble gel, which can be used to reduce the inflammation and enhance wound healing of model mice.


Asunto(s)
Citrus , Jugos de Frutas y Vegetales/análisis , Limoninas/aislamiento & purificación , Impresión Molecular/métodos , Adsorción , Animales , Jugos de Frutas y Vegetales/normas , Limoninas/química , Limoninas/farmacología , Ratones , Cicatrización de Heridas/efectos de los fármacos
15.
Food Funct ; 9(7): 3807-3814, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29932194

RESUMEN

An efficient method combined with fingerprint and chemometric analyses was developed to evaluate the quality of the traditional Chinese medicine plant Penthorum chinense Pursh. Nine samples were collected from different regions during different harvest periods, and 17 components in the form of extracts were simultaneously examined to assess quality by using high-performance liquid chromatography. The hepatoprotective effects of components were investigated by assessing the inhibition of SMMC-7721 cell growth. The results indicated that the quality control method was accurate, stable, and reliable, and the hierarchical heat-map cluster and the principle component analyses confirmed that the classification of all nine samples was consistent. Quercetin and ellagitannins including pinocembrin-7-O-[3''-O-galloyl-4'',6''-hexahydroxydiphenoyl]-ß-glucose (PGHG), thonningianin A, thonningianin B, and other flavonoids were abundant in the extracts, and significantly contributed to the hepatoprotective effects.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Magnoliopsida/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonoides/química , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/fisiopatología
16.
J Sep Sci ; 41(15): 3060-3068, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29878532

RESUMEN

Thermo-responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N-isopropylacrylamide as the thermo-responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5-100 µg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 µg/mL, respectively. Furthermore, the thermo-responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature-responsive regulation.


Asunto(s)
Isoflavonas/química , Impresión Molecular , Polímeros/química , Temperatura , Adsorción , Isoflavonas/aislamiento & purificación , Fenómenos Magnéticos , Polimerizacion , Polímeros/síntesis química , Propiedades de Superficie , Trifolium/química
17.
J Agric Food Chem ; 66(3): 653-660, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29260546

RESUMEN

In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe3O4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.


Asunto(s)
Heces/química , Nanopartículas de Magnetita/química , Polímeros/química , Pulsatilla/metabolismo , Saponinas/química , Saponinas/aislamiento & purificación , Extracción en Fase Sólida/métodos , Animales , Cromatografía Líquida de Alta Presión , Indoles/química , Magnetismo , Espectrometría de Masas , Impresión Molecular , Polímeros/síntesis química , Pulsatilla/química , Ratas , Saponinas/metabolismo , Extracción en Fase Sólida/instrumentación
18.
Int Immunopharmacol ; 53: 73-82, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29040945

RESUMEN

Triptolide (TP) is a diterpene triepoxide with various biological activities, but its clinical applications have been limited by potential hepatotoxicity, which can be attributed to T helper 17 (Th17)/T regulatory (Treg) cell imbalance. Quercetin (QE), a natural flavonoid, has been reported to have many benefits and medicinal properties, including hepatoprotective activity against TP-induced liver injury. However, the hepatoprotection mechanisms have not been clarified. The present study was designed to explore the protective effect and the mechanism of QE against TP-induced liver injury. Treatment with QE (20, 50 and 80mg/kg) prior to TP administration restored TP-induced alterations in a certain dose range indicating that QE was able to inhibit TP-induced liver injury. One mechanism underlying this effect was the shifting balance in Th17 and Treg cells from Th17 dominance to Treg dominance. Furthermore, QE markedly decreased the expression level of the Th17-related pro-inflammatory cytokines interleukin (IL)-17 and IL-6, as well as the Th17 transcription factor retinoid-related orphan receptor-γt (ROR-γt). TP induced downregulation in the expression of anti-inflammatory cytokine IL-10, but the expression of Treg transcription factor forkhead/winged-helix family transcriptional repressor p3 (FoxP3) was restored by QE. In the process of exploring the possible hepatoprotective mechanisms of QE, we found that QE significantly reduced both protein and mRNA expression of Toll-like receptor 4 (TLR4), which in turn not only inactivated myeloid differentiation primary response gene 88 (MYD88), nuclear factor kappa B (NF-κB) and related inflammatory cytokines IL-6 and IL-17, but also simultaneously increased the levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). Furthermore, blocking of TLR4 enhanced the effect of QE in regulating the Th17/Treg imbalance. In summary, this report has demonstrated for the first time that the protection afforded by QE against TP-induced liver injury was associated with a shift in the balance of Th17 and Treg cells to Treg dominance, which was regulated by Tim-3 and TLR4-MyD88-NF-κB signaling pathway.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Hígado/patología , Quercetina/uso terapéutico , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Diterpenos/toxicidad , Compuestos Epoxi/toxicidad , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Fenantrenos/toxicidad , Transducción de Señal , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
19.
Biomed Chromatogr ; 31(5)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27761923

RESUMEN

Pulsatilla chinensis (Bunge) Regel is commonly used in Asia, and anemoside B4 (AB4) is its major saponin, with diverse pharmaceutical effects. Previous studies showed that intestinal flora plays an important role in the metabolism of herbs administered orally. In this study, the metabolic profile of AB4 with microflora in rat small and large intestines in vitro was investigated. Gut microflora was collected from different intestinal segments and anaerobically incubated with AB4 at 37°C for 24, 48, 72 and 96 h, respectively. A total of 10 metabolites were detected and identified by ultra- performance liquid chromatography/quadrupole time-of-flight mass spectrometry, involving the products of oxygenation and deglycosylation reactions. Gut microflora in the large intestine generated more comprehensive metabolic pathways, which appears to be attributable to the wider range of bacterial types and numbers of bacteria. Human cancer cell lines SMMC-7721, Hela and MCF-7 were treated with metabolite pools by MTT assay, together with M6 as the greatest deglycosylation product. As a result, M6 exhibited a reduction in cell viability of SMMC-7721 with an IC50 value of 22.28 ± 1.26 µg/mL. The present study provided scientific evidence for AB4 metabolism in small and large intestines, which is helpful to reveal the active forms of AB4 in vivo.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Intestino Grueso/microbiología , Intestino Delgado/microbiología , Saponinas/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Biotransformación , Línea Celular , Proliferación Celular/efectos de los fármacos , Microbioma Gastrointestinal , Humanos , Intestino Grueso/efectos de los fármacos , Intestino Grueso/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Estructura Molecular , Ratas Sprague-Dawley , Saponinas/química , Saponinas/metabolismo , Saponinas/farmacología
20.
Am J Chin Med ; 44(6): 1221-1236, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27744729

RESUMEN

Drug-induced liver injury (DILI) is the most common cause of acute liver failure. Disruption of the Th17/Treg balance can lead to hepatic inflammation, which causes the main symptoms of DILI. Here we investigate the protective mechanisms of (-)-Epigallocatechin-3-gallate (EGCG) on triptolide (TP)-induced DILI that shows the Th17/Treg imbalance. Pretreatment with EGCG (5[Formula: see text]mg/kg) for 10 days before TP (0.5[Formula: see text]mg/kg) administration in mice significantly reduced the increased alanine aminotransferase (ALT) level ([Formula: see text]) induced by TP treatment. The hepatic histology analysis further proved that EGCG protected mice from TP-induced liver injury. The imbalance of Th17/Treg was induced by TP treatment, as shown by the upregulation of TLR4 and downregulation of Tim3 expression. EGCG pretreatment can maintain the expression of TLR4 and Tim3 at normal levels to restore the Th17/Treg imbalance. In addition, EGCG can block the TP-induced expression of the downstream targets of TLR4, including MyD88, NF[Formula: see text]B, and retinoid related orphan receptor (ROR-[Formula: see text]t), while EGCG can restore the TP inhibition of forkhead/winged-helix family transcriptional repressor p3 (FoxP3) that is the downstream target of Tim3. Consequently, EGCG pretreatment can effectively inhibit the Th17-related pro-inflammatory cytokine (e.g. IL-17 and IL-6) upregulation induced by TP treatment. However, TP inhibition of Treg-related anti-inflammatory cytokine IL-10 production was restored by EGCG pretreatment. Taken together, these results suggest that EGCG possesses significant protective properties against TP-induced hepatic inflammatory injury, and that these properties are carried out via the restoration of the Th17/Treg imbalance by the inhibition of the TLR4 signaling pathway and the enhanced activation of the Tim3 signaling pathway.


Asunto(s)
Catequina/análogos & derivados , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Diterpenos/efectos adversos , Inmunosupresores/efectos adversos , Fenantrenos/efectos adversos , Fitoterapia , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Catequina/administración & dosificación , Catequina/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Compuestos Epoxi/efectos adversos , Femenino , Receptor 2 Celular del Virus de la Hepatitis A , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4 , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA