Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Int J Biol Macromol ; 278(Pt 2): 134641, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128755

RESUMEN

Organometallic catalyst is extensively applied for the non-enzymatic regeneration of nicotinamide adenine dinucleotide (phosphate) cofactors, but suffering from the mutual inactivation with the enzymes in one pot. The spatially separated immobilization of organometallic catalyst and enzymes on suitable carriers not only can reduce their mutual inhabitation but also can enhance their reusability. Here in this work, we present a hierarchical porous COFs (HP-TpBpy) that incorporated with [(Cp*RhCl2]2 to generate the metalized COF, Rh-HP-TpBpy. The obtained Rh-HP-TpBpy exhibited superior performance in nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration using formate as the hydride donor, significantly outperforming the natural formate dehydrogenases in cofactor preference toward NADP+. Subsequently, the Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) was then cross-linked into enzyme aggregates (CLEA) and immobilized on hierarchical Rh-HP-TpBpy, achieving the integrated chemoenzymatic catalyst, LfSDR1@Rh-HP-TpBpy, which can catalyze the chemoenzymatic reduction of halogenated aryl ketones and give the corresponding optically active halohydrins with high conversion and enantiomeric excess (ee) value up to 99 %. The LfSDR1@Rh-HP-TpBpy also exhibits largely enhanced stability compared with the free LfSDR1 and the CLEAs-LfSDR1, enabling its excellent reusability.


Asunto(s)
Enzimas Inmovilizadas , Estructuras Metalorgánicas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Catálisis , NADP/química , NADP/metabolismo , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , NAD/química , Reactivos de Enlaces Cruzados/química , Biocatálisis
2.
Small ; : e2309570, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155494

RESUMEN

The escalating demand for portable near-infrared (NIR) light sources has posed a formidable challenge to the development of NIR phosphors characterized by high efficiency and exceptional thermal stability. Taking inspiration from the chemical unit co-substitution strategy, high-performance tunable (Lu3- xCax)(Ga5- xGex)O12:6%Cr3+ (x = 0-3) phosphors are designed with an emission center from 704 to 780 nm and a broadest full width at half maximum (FWHM) of up to 172 nm by introducing Ca2+ and Ge4+ ions into the garnet structure. In particular, Lu3Ga5O12:6%Cr3+ demonstrates an anti-thermal quenching phenomenon (I423K = 113.1%). Compared to Lu3Ga5O12:6%Cr3+, Lu2CaGa4GeO12:6%Cr3+ exhibits significantly improved FWHM and IQE by 108 nm and 25.5%, respectively, while maintaining good thermal stability (I423K = 80.4%). Finally, Lu2CaGa4GeO12:6%Cr3+ phosphor is combined with a 465 nm blue LED chip to fabricate NIR LED devices, exhibiting a NIR electroluminescence efficiency of 13.31%@100 mA and demonstrating successful applications in nocturnal illumination and biomedical imaging technology. This work offers a fresh perspective on the design of highly efficient NIR garnet phosphors.

3.
Luminescence ; 39(8): e4858, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129443

RESUMEN

The research outlined a novel approach for creating a sensitive and efficient ratio fluorescent probe for ciprofloxacin (CIP) detection. The method used the biomass materials passionfruit shell and diethylenetriamine as carbon and nitrogen sources, respectively, to prepare blue fluorescent carbon quantum dots (b-CQDs) with an average size of 3.29 nm and a quantum yield of 19.6% by a hydrothermal method. The newly designed b-CQDs/riboflavin ratio fluorescent probe demonstrates a distinct advantage for CIP monitoring, exhibiting a marked increase in fluorescence intensity at 445 nm upon interaction with CIP, while maintaining a stable intensity at 510 nm. In the water system, the I445 nm/I510 nm ratio of the fluorescent probe showed a significant linear relationship with CIP at the concentrations of 0-250 µmol·L-1, and the probe boasts a low detection limit of 0.86 µmol·L-1. The outstanding selectivity, broad detection range, low detection limits, and high quantum yield of the b-CQDs highlight their significant potential in the development of advanced sensing probes for efficient detection of ciprofloxacin, offering promising insights for future sensor technology advancements.


Asunto(s)
Carbono , Ciprofloxacina , Colorantes Fluorescentes , Puntos Cuánticos , Puntos Cuánticos/química , Ciprofloxacina/análisis , Ciprofloxacina/química , Ciprofloxacina/sangre , Colorantes Fluorescentes/química , Carbono/química , Espectrometría de Fluorescencia , Límite de Detección
5.
Cancer Sci ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009033

RESUMEN

Austocystin D is a natural compound that induces cytochrome P450 (CYP) monooxygenase-dependent DNA damage and growth inhibition in certain cancer cell lines. Cancer cells exhibiting higher sensitivity to austocystin D often display elevated CYP2J2 expression. However, the essentiality and the role of CYP2J2 for the cytotoxicity of this compound remain unclear. In this study, we demonstrate that CYP2J2 depletion alleviates austocystin D sensitivity and DNA damage induction, while CYP2J2 overexpression enhances them. Moreover, the investigation into genes involved in austocystin D cytotoxicity identified POR and PGRMC1, positive regulators for CYP activity, and KAT7, a histone acetyltransferase. Through genetic manipulation and analysis of multiomics data, we elucidated a role for KAT7 in CYP2J2 transcriptional regulation. These findings strongly suggest that CYP2J2 is crucial for austocystin D metabolism and its subsequent cytotoxic effects. The potential use of austocystin D as a therapeutic prodrug is underscored, particularly in cancers where elevated CYP2J2 expression serves as a biomarker.

6.
J Control Release ; 373: 399-409, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033984

RESUMEN

C. neoformans, a life-threatening invasive fungal pathogen, can hijack the pulmonary macrophages as 'Trojan horse', leading to cryptococcal meningitis and recurrence. Combatting these elusive fungi has posed a long-standing challenge. Here, we report an inhaled cascade-targeting drug delivery platform that can sequentially target host cells and intracellular fungi. The delivery system involves encapsulating amphotericin B (AMB) into polymeric particles decorated with AMB, creating a unique surface pattern, denoted as APP@AMB. The surface topology of APP@AMB guides the efficient macrophages internalization and intracellular drugs accumulation. Following endocytosis, the surface-functionalized AMB specifically targets intracellular fungi by binding to ergosterol in the fungal membrane, as demonstrated through co-localization studies using confocal microscopy. Through on-site AMB delivery, APP@AMB displays superior efficacy in eliminating C. neoformans in the lungs and brain compared to free AMB following inhalation in infected mice. Additionally, APP@AMB significantly alleviates the nephrotoxicity associated with free AMB inhalation therapy. Thus, this biocompatible delivery system enabling host cells and intracellular fungi targeting in a cascade manner, provides a new avenue for the therapy of fungal infection.


Asunto(s)
Anfotericina B , Antifúngicos , Criptococosis , Cryptococcus neoformans , Sistemas de Liberación de Medicamentos , Cryptococcus neoformans/efectos de los fármacos , Animales , Anfotericina B/administración & dosificación , Antifúngicos/administración & dosificación , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Ratones , Polímeros/química , Polímeros/administración & dosificación , Pulmón/metabolismo , Pulmón/microbiología , Células RAW 264.7 , Ratones Endogámicos BALB C , Administración por Inhalación , Femenino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
8.
Front Nutr ; 11: 1390282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903624

RESUMEN

Objective: To investigate the association between the weight-adjusted-waist index (WWI) and cognitive decline in elderly Americans from 2011 to 2014. Methods: A cross-sectional study was conducted on 2,762 elderly participants from the National Health and Nutrition Examination (NHANES) between 2011 and 2014. WWI was calculated by dividing waist circumference (cm) by the square root of body weight (kg). Participants assessed their cognitive functions using tests such as the DSST, AFT, and CERAD W-L. In this research, multiple logistic regression, HIA, limited cubic spline (RCS), and threshold effect analysis methods were utilized to explore the relationship between cognitive decline and WWI. Results: The study involved 2,762 participants aged 60 years and older, comprising 1,353 males (49%) and 1,409 females (51%), with a median age of 69.3 years (standard deviation = 6.7). The analysis revealed that the risk of cognitive decline was positively associated with the WWI. Fully adjusted models indicated significant correlations with the CERAD W-L [odds ratio (OR) = 1.24, 95% confidence interval (CI) = 1.06-1.46, p < 0.008], AFT (OR = 1.27, 95% CI = 1.08-1.49, p = 0.003), and DSST (OR = 1.56, 95% CI = 1.29-1.9, p < 0.001). Subgroup analysis demonstrated a consistent relationship across different population settings except for gender (average of interactions, p > 0.05). A J-shaped relationship between WWI and low DSST scores was observed using multivariate restricted cubic spline (RCS) regression (P for non-linearity <0.05), with the curve steepening when WWI ≥ 12.21 cm/√kg. Additionally, the study found that WWI was more strongly associated with an increased risk of cognitive decline than other obesity indicators such as Body Mass Index (BMI), waist circumference (WC), and A Body Shape Index (ABSI). Conclusion: Our data have shown a significant positive association between the WWI and a higher risk of cognitive decline in older Americans, with a J-shaped non-linear relationship between WWI and DSST. In addition, our findings indicate that WWI was associated with greater cognitive decline than other markers of obesity.

9.
Medicine (Baltimore) ; 103(24): e38506, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875383

RESUMEN

Blood cell ratios are a standard clinical index for the assessment of inflammation. Although a large number of epidemiological investigations have shown that inflammation is a potential risk factor for the development of coronary heart disease (CHD), there is not sufficient and direct evidence to confirm the relationship between blood cell ratios and CHD. Therefore, this study aimed to elucidate the effect of blood cell ratios on the incidence of coronary heart disease. This 10-year national study included data from 24,924 participants. The independent variable was blood cell ratios, and the dependent variable was coronary heart diseases (yes or no). The relationship between blood cell ratios and coronary heart disease was verified using baseline characteristic analysis, multivariate logistic regression analysis, smoothed fitted curves, and subgroup analysis. This study found that in multiple logistic regression analysis showed significant positive correlation between monocyte counts × meutrophil counts/lymphocyte counts (SIRI) (OR = 1.495; 95% CI = 1.154-1.938), monocyte-lymphocyte ratio (MLR) (OR = 3.081; 95% CI = 1.476-6.433) and the incidence of CHD; lymphocyte-monocyte ratio (LMR) (OR = 0.928;95% CI = 0.873-0.987), monocyte-lymphocyte ratio (PLR) (OR = 0.997;95% CI = 0.994-1.000) showed negative correlation with CHD. The smoothed curve fitting shows a nonlinear relationship between SIRI, LMR, PLR, and CHD, with an inverted U-shaped curve between SIRI and CHD, an L-shaped angle between LMR and CHD, and a U-shaped curve between PLR and CHD, respectively. Their inflection points are 1.462, 3.75, and 185.714, respectively. SIRI has an inverted U-shaped curve with coronary heart disease, suggesting that low levels of SIRI increase the risk of CHD; LMR with an L-shaped curve with CHD, and PLR with a U-shaped curve with CHD, suggesting that the risk of CHD can be prevented when LMR and PLR are reduced to a certain level. This has positive implications for the prevention and treatment of CHD.


Asunto(s)
Enfermedad Coronaria , Humanos , Masculino , Femenino , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/sangre , Persona de Mediana Edad , Incidencia , Adulto , Anciano , Monocitos , Factores de Riesgo , Recuento de Linfocitos , Recuento de Leucocitos
10.
JACS Au ; 4(6): 2281-2290, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938794

RESUMEN

Direct synthesis of aliphatic amines from alkynes is highly desirable due to its atom economy and high stereoselectivity but still challenging, especially for the long-chain members. Here, a combination of Au-catalyzed alkyne hydration and amine dehydrogenase-catalyzed (AmDH) reductive amination was constructed, enabling sequential conversion of alkynes into chiral amines in aqueous solutions, particularly for the synthesis of long-chain aliphatic amines on a large scale. The production of chiral aliphatic amines with more than 6 carbons reached 36-60 g/L. A suitable biocatalyst [PtAmDH (A113G/T134G/V294A)], obtained by data mining and active site engineering, enabled the transformation of previously inactive long-chain ketones at high concentrations. Computational analysis revealed that the broader substrate scope and tolerance with the high substrate concentrations resulted from the additive effects of mutations introduced to the three gatekeeper residues 113, 134, and 294.

11.
Angew Chem Int Ed Engl ; 63(37): e202407778, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38871651

RESUMEN

Multienzyme cascades (MECs) have gained much attention in synthetic chemistry but remain far from being a reliable synthetic tool. Here we report a four-enzyme cascade comprising a cofactor-independent and a cofactor self-sustaining bienzymatic modules for the enantioselective benzylic C-H amination of arylalkanes, a challenging transformation from bulk chemicals to high value-added chiral amines. The two modules were subsequently optimized by enzyme co-immobilization with microenvironmental tuning, and finally integrated in a gas-liquid segmented flow system, resulting in simultaneous improvements in enzyme performance, mass transfer, system compatibility, and productivity. The flow system enabled continuous C-H amination of arylalkanes (up to 100 mM) utilizing the sole cofactor NADH (0.5 mM) in >90 % conversion, achieving a high space-time yield (STY) of 3.6 g ⋅ L-1 ⋅ h-1, which is a 90-fold increase over the highest value previously reported.


Asunto(s)
Enzimas Inmovilizadas , Aminación , Estereoisomerismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aminas/química , Alcanos/química , Estructura Molecular , NAD/química , NAD/metabolismo
12.
Chemosphere ; 359: 142286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729439

RESUMEN

Antibiotics are emerging organic pollutants that have attracted huge attention owing to their abundant use and associated ecological threats. The aim of this study is to develop and use photocatalysts to degrade antibiotics, including tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMOX). Therefore, a novel Z-scheme heterojunction composite of g-C3N4 (gCN) and 3D flower-like Bi2WO6 (BW) perovskite structure was designed and developed, namely Bi2WO6/g-C3N4 (BW/gCN), which can degrade low-concentration of antibiotics in aquatic environments under visible light. According to the Density Functional Theory (DFT) calculation and the characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), Scanning electron microscopy - energy spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), this heterojunction was formed in the recombination process. Furthermore, the results of 15 wt%-BW/gCN photocatalytic experiments showed that the photodegradation rates (Rp) of TC, CIP, and AMOX were 92.4%, 90.1% and 82.3%, respectively, with good stability in three-cycle photocatalytic experiments. Finally, the quenching experiment of free radicals showed that the holes (h+) and superoxide radicals (·O2-) play a more important role than the hydroxyl radicals (·OH) in photocatalysis. In addition, a possible antibiotic degradation pathway was hypothesized on the basis of High performance liquid chromatography (HPLC) analysis. In general, we have developed an effective catalyst for photocatalytic degradation of antibiotic pollutants and analyzed its photocatalytic degradation mechanism, which provides new ideas for follow-up research and expands its application in the field of antibiotic composite pollution prevention and control.


Asunto(s)
Antibacterianos , Bismuto , Compuestos de Calcio , Óxidos , Fotólisis , Titanio , Antibacterianos/química , Óxidos/química , Titanio/química , Catálisis , Bismuto/química , Compuestos de Calcio/química , Contaminantes Químicos del Agua/química , Grafito/química , Tetraciclina/química , Amoxicilina/química , Ciprofloxacina/química , Luz , Compuestos de Nitrógeno/química , Nitrilos/química
13.
World J Gastroenterol ; 30(17): 2354-2368, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38813048

RESUMEN

BACKGROUND: Difficulty in obtaining tetracycline, increased adverse reactions, and relatively complicated medication methods have limited the clinical application of the classic bismuth quadruple therapy. Therefore, the search for new alternative drugs has become one of the research hotspots. In recent years, minocycline, as a semisynthetic tetracycline, has demonstrated good potential for eradicating Helicobacter pylori (H. pylori) infection, but the systematic evaluation of its role remains lacking. AIM: To explore the efficacy, safety, and compliance of minocycline in eradicating H. pylori infection. METHODS: We comprehensively retrieved the electronic databases of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang database as of October 30, 2023, and finally included 22 research reports on H. pylori eradication with minocycline-containing regimens as per the inclusion and exclusion criteria. The eradication rates of H. pylori were calculated using a fixed or a random effect model, and the heterogeneity and publication bias of the studies were measured. RESULTS: The single-arm meta-analysis revealed that the minocycline-containing regimens achieved good overall H. pylori eradication rates, reaching 82.3% [95% confidence interval (CI): 79.7%-85.1%] in the intention-to-treat analysis and 90.0% (95%CI: 87.7%-92.4%) in the per-protocol analysis. The overall safety and compliance of the minocycline-containing regimens were good, demonstrating an overall incidence of adverse reactions of 36.5% (95%CI: 31.5%-42.2%). Further by traditional meta-analysis, the results showed that the minocycline-containing regimens were not statistically different from other commonly used eradication regimens in eradication rate and incidence of adverse effects. Most of the adverse reactions were mild to moderate and well-tolerated, and dizziness was relatively prominent in the minocycline-containing regimens (16%). CONCLUSION: The minocycline-containing regimens demonstrated good efficacy, safety, and compliance in H. pylori eradication. Minocycline has good potential to replace tetracycline for eradicating H. pylori infection.


Asunto(s)
Antibacterianos , Quimioterapia Combinada , Infecciones por Helicobacter , Helicobacter pylori , Minociclina , Humanos , Minociclina/efectos adversos , Minociclina/administración & dosificación , Minociclina/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Quimioterapia Combinada/métodos , Resultado del Tratamiento , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/uso terapéutico , Inhibidores de la Bomba de Protones/administración & dosificación , Cumplimiento de la Medicación
14.
Chembiochem ; 25(15): e202400346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775416

RESUMEN

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.


Asunto(s)
Aminas , Monoaminooxidasa , Polímeros , Aminas/química , Aminas/metabolismo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Polímeros/química , Polímeros/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/química , Catalasa/química , Catalasa/metabolismo , Indoles/química , Indoles/metabolismo , Estereoisomerismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oxidación-Reducción , Nanopartículas/química , Biocatálisis , Compuestos de Organosilicio/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Catálisis
15.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572102

RESUMEN

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

16.
Angew Chem Int Ed Engl ; 63(24): e202405310, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38606567

RESUMEN

Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one-dimensional hybrid chiral manganese(II) chloride single crystals, R/S-(3-methyl piperidine)MnCl3 (R/S-1) and R/S-(3-hydroxy piperidine)MnCl3 (R/S-2), crystallizing in the non-centrosymmetric space group P212121. In comparison to R/S-1, R/S-2 single crystals not only show red emission with near-unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10-3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks between R/S-(3-hydroxy piperidine) cations and [MnCl6]4- chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4- luminophores induced by N-H⋅⋅⋅Cl hydrogen bonding with R/S-(3-hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light-emitting diodes and X-ray scintillators. This work shows a highly efficient photoluminescent Mn-based halide and offers a strategy for designing multifunctional chiral metal halides.

17.
Adv Sci (Weinh) ; 11(25): e2400730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654621

RESUMEN

Metal-enzyme integrated catalysts (MEICs) that combine metal and enzyme offer great potential for sustainable chemoenzymatic cascade catalysis. However, rational design and construction of optimal microenvironments and accessible active sites for metal and enzyme in individual nanostructures are necessary but still challenging. Herein, Pd nanoparticles (NPs) and Candida antarctica lipase B (CALB) are co-immobilized into the pores and surfaces of covalent organic frameworks (COFs) with tunable functional groups, affording Pd/COF-X/CALB (X = ONa, OH, OMe) MEICs. This strategy can regulate the microenvironment around Pd NPs and CALB, and their interactions with substrates. As a result, the activity of the COF-based MEICs in catalyzing dynamic kinetic resolution of primary amines is enhanced and followed COF-OMe > COF-OH > COF-ONa. The experimental and simulation results demonstrated that functional groups of COFs modulated the conformation of CALB, the electronic states of Pd NPs, and the affinity of the integrated catalysts to the substrate, which contributed to the improvement of the catalytic activity of MEICs. Further, the MEICs are prepared using COF with hollow structure as support material, which increased accessible active sites and mass transfer efficiency, thus improving catalytic performance. This work provides a blueprint for rational design and preparation of highly active MEICs.

18.
Heliyon ; 10(5): e26989, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468970

RESUMEN

Background: Activation of the Hedgehog signaling pathway is linked to the initiation and development of human hepatocellular carcinoma (HCC). However, its impact on clinical outcomes and the HCC microenvironment remains unclear. Methods: We performed comprehensive analyses of Hedgehog pathway genes in a large cohort of HCC patients. Specifically, we utilized univariate Cox regression analysis to identify Hedgehog genes linked to overall survival, and the LASSO algorithm was used to construct a Hedgehog-related gene pattern. We subsequently examined the correlation between the Hedgehog pattern and the HCC microenvironment employing the CIBERSORT and ssGSEA algorithms. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the anti-PD-L1 treatment dataset (IMvigor210) are used to evaluate the clinical response of the Hedgehog pattern in predicting immune checkpoint inhibitors. Results: We found that the Hedgehog activation score (HHAS), a prognostic score based on 11 Hedgehog genes, was significantly associated with HCC patient survival. Patients exhibiting high HHAS experienced markedly reduced survival rates compared to those with low HHAS, and HHAS emerged as an independent prognostic factor for HCC. Functional enrichment analysis unveiled the association of the HHAS phenotype with functions related to the immune system, and further investigation demonstrated that HCC patients exhibiting low HHAS displayed elevated levels of anti-tumor immune activation in CD8+ T cells, while high HHAS were linked to immune escape phenotypes and increased infiltration of immune suppressive cells. In addition, in the Immune Checkpoint Inhibitor (ICI) cohort of IMvigor210, patients with higher HHAS had worse ICI treatment outcomes and shortened survival time, indicating that the HHAS is a useful indicator for predicting patient response to immunotherapy. Conclusions: In summary, our study offers valuable insights for advancing research on Hedgehog and its impact on tumor immunity, which provides an opportunity to optimize prognosis and immune therapy for HCC.

19.
Front Pharmacol ; 15: 1342181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500764

RESUMEN

Transferrin (Tf), widely known for its role as an iron-binding protein, exemplifies multitasking in biological processes. The role of Tf in iron metabolism involves both the uptake of iron from Tf by various cells, as well as the endocytosis mediated by the complex of Tf and the transferrin receptor (TfR). The direct conjugation of the therapeutic compound and immunotoxin studies using Tf peptide or anti-Tf receptor antibodies as targeting moieties aims to prolong drug circulation time and augment efficient cellular drug uptake, diminish systemic toxicity, traverse the blood-brain barrier, restrict systemic exposure, overcome multidrug resistance, and enhance therapeutic efficacy with disease specificity. This review primarily discusses the various biological actions of Tf, as well as the development of Tf-targeted nano-based drug delivery systems. The goal is to establish the use of Tf as a disease-targeting component, accentuating the potential therapeutic applications of this protein.

20.
J Org Chem ; 89(7): 4818-4825, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38536102

RESUMEN

The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.


Asunto(s)
Alcohol Deshidrogenasa , Paladio , Paladio/química , Estereoisomerismo , Estructura Molecular , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...