Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 158, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825680

RESUMEN

BACKGROUND: Studies have shown that oxidative stress and its resistance plays important roles in the process of tumor metastasis, and mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage is an important molecular event in oxidative stress. In lung cancer, the normal fibroblasts (NFs) are activated as cancer-associated fibroblasts (CAFs), and act in the realms of the tumor microenvironment (TME) with consequences for tumor growth and metastasis. However, its activation mechanism and whether it participates in tumor metastasis through antioxidative stress remain unclear. METHODS: The role and signaling pathways of tumor cell derived extracellular vesicles (EVs) activating NFs and the characteristic of induced CAFs (iCAFs) were measured by the transmission electron microscopy, nanoparticle tracking analysis, immunofluorescence, collagen contraction assay, quantitative PCR, immunoblotting, luciferase reporter assay and mitochondrial membrane potential detection. Mitochondrial genome and single nucleotide polymorphism sequencing were used to investigate the transport of mtDNA from iCAFs to ρ0 cells, which were tumor cells with mitochondrial dysfunction caused by depletion of mtDNA. Further, the effects of iCAFs on mitochondrial function, growth and metastasis of tumor cells were analysed in co-culture models both in vitro and in vivo, using succinate dehydrogenase, glutathione and oxygen consumption rate measurements, CCK-8 assay, transwell assay, xenotransplantation and metastasis experiments as well as in situ hybridization and immunohistochemistry. RESULTS: Our findings revealed that EVs derived from high-metastatic lung cancer cells packaged miR-1290 that directly targets MT1G, leading to activation of AKT signaling in NFs and inducing NFs conversion to CAFs. The iCAFs exhibit higher levels of autophagy and mitophagy and more mtDNA release, and reactive oxygen species (ROS) could further promote this process. After cocultured with the conditioned medium (CM) of iCAFs, the ρ0 cells may restore its mitochondrial function by acquisition of mtDNA from CAFs, and further promotes tumor metastasis. CONCLUSIONS: These results elucidate a novel mechanism that CAFs activated by tumor-derived EVs can promote metastasis by transferring mtDNA and restoring mitochondrial function of tumor cells which result in resistance of oxidative stress, and provide a new therapeutic target for lung cancer metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , ADN Mitocondrial , Vesículas Extracelulares , Neoplasias Pulmonares , Mitofagia , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Humanos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Ratones , Animales , Metástasis de la Neoplasia , Línea Celular Tumoral , Microambiente Tumoral
2.
Clin Ther ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38942719

RESUMEN

PURPOSE: Penicillin allergy is the most common drug allergy among hospitalized patients. Traditionally, aztreonam is recommended for patients labeled with penicillin allergy (PLWPA) in our institutional empirical antibiotic guidelines. Due to a global aztreonam shortage in December 2022, the antimicrobial stewardship unit recommended ceftazidime as a substitute. There is a paucity of real-world data on the safety profile of ceftazidime in PLWPA. Hence, we evaluated tolerability outcomes of ceftazidime use in PLWPA. METHODS: This retrospective cohort study compared PLWPA in Singapore General Hospital who received aztreonam (October 2022-December 2022) or ceftazidime (December 2022-February 2023). Patients were stratified according to their risk of allergic reaction (AR) based on history of penicillin allergy. The severity of AR was based on the Delphi study grading system. The primary outcome was development of AR after initiation of aztreonam or ceftazidime. The secondary tolerability outcomes include hepatotoxicity and neurotoxicity. FINDINGS: There were 168 patients in the study; 69 were men (41.1%) and the median age was 69 years (interquartile range: 59-76 years). Incidence of AR was statistically similar in both arms: 1 of 102 patients (0.98%) in the aztreonam arm vs 2 of 66 patients (3.03%) in the ceftazidime arm (P = 0.33). The patient in the aztreonam arm was deemed at medium risk of having an AR and developed localized rashes (grade 1). Both patients in the ceftazidime arm were deemed at high risk of AR and developed localized skin reaction (grade 1). Hepatotoxicity was observed in 1 patient prescribed aztreonam. No patients in the ceftazidime arm developed adverse events. IMPLICATIONS: Ceftazidime appears to be better tolerated and cheaper compared with aztreonam in PLWPA, and serves as an antimicrobial stewardship strategy to conserve broader-spectrum antibiotics use.

3.
Methods Mol Biol ; 2820: 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941012

RESUMEN

Soil metaproteomics could explore the proteins involved in life activities and their abundance in the soils to overcome the difficulty in pure cultures of soil microorganisms and the limitations of proteomics of pure cultures. However, the complexity and heterogeneity of soil composition, the low abundance of soil proteins, and the presence of massive interfering substances (including humic compounds) generally lead to an extremely low extraction efficiency of soil proteins. Therefore, the efficient extraction of soil proteins is a prerequisite and bottleneck problem in soil metaproteomics. In this chapter, a soil protein extraction method suitable for most types of soils with low cost and enabling simple operation (about 150 µg protein can be extracted from 5.0 g soil) is described. The quantity and purity of the extracted soil proteins could meet the requirements for further analysis using routine mass spectrometry-based proteomics.


Asunto(s)
Proteómica , Suelo , Suelo/química , Proteómica/métodos , Proteínas/aislamiento & purificación , Proteínas/análisis , Microbiología del Suelo , Espectrometría de Masas/métodos
4.
Methods Mol Biol ; 2820: 139-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941021

RESUMEN

Our understanding of how fungi respond and adapt to external environments can be increased by the comprehensive data sets of fungal-secreted proteins. Fungi produce a variety of secreted proteins, and environmental conditions can easily influence the fungal secretome. However, the low abundance of secreted proteins and their post-translational modifications make protein extraction more challenging. Hence, the enrichment of secreted proteins is a crucial procedure for secretome analysis. This chapter illustrates a protocol for iTRAQ-based quantitative secretome analysis describing the example of fungi exposed to different environmental conditions. The fungal-secreted proteins can be extracted by combining ultrafiltration and TCA-acetone precipitation. Subsequently, the secreted proteins can be identified and quantified by the iTRAQ-based quantitative proteomics approach.


Asunto(s)
Proteínas Fúngicas , Proteómica , Proteómica/métodos , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteoma , Ultrafiltración/métodos , Cromatografía Liquida/métodos
5.
Front Pharmacol ; 15: 1389271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783953

RESUMEN

Aims: The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods: Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results: The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion: The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.

6.
Acad Radiol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38418346

RESUMEN

RATIONALE AND OBJECTIVES: This study investigates the potential of quantitative Contrast-Enhanced Ultrasound (CEUS) parameters to distinguish between graft dysfunction due to rejection and non-rejection in kidney transplant recipients. METHODS: In this retrospective study, 50 kidney transplant patients who presented elevated serum creatinine or proteinuria were analyzed. They were categorized as rejection or non-rejection based on biopsy outcomes. These classifications were applied in both derivation (n = 33) and validation cohorts (n = 17). Prior to the biopsy, all patients underwent a CEUS. Quantitative parameters derived from the CEUS were further analyzed for their consistency and reliability. Additionally, the relationship between the Banff scores, a standard for diagnosing transplant rejections, and these CEUS parameters was explored. RESULTS: Significant differences between rejection and non-rejection groups were observed in the CEUS parameters of derivation cohorts. Specifically, Peak Intensity (PI), 1/2 Descending Time (DT/2), Area Under Curve (AUC), and Mean Transit Time (MTT) stood out. Sensitivity and specificity for these parameters were 76.5% and 87.5% for PI, 76.5% and 81.2% for DT/2, 76.5% and 87.5% for AUC, and 68.8% and 94.1% for MTT, respectively. DT/2 and MTT showed superior interobserver agreement compared to PI and AUC. When extrapolating the cutoff values from the derivation cohort to the validation group, DT/2 and AUC exhibited optimal diagnostic precision with positive and negative predictive values being 91.7% vs. 100% and 100% vs. 85.7%, respectively. Additionally, DT/2 effectively differentiated between mild and moderate to severe microvascular inflammation, pivotal in diagnosing antibody-mediated renal transplant rejection. CONCLUSION: DT/2 from CEUS parameters presents as a reliable tool to differentiate rejection from non-rejection causes in renal transplant dysfunction. Yet, large-scale, multi-center studies are essential for further validation.

7.
Gene ; 905: 148220, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38286269

RESUMEN

Glioma is the most common malignant tumor in the brain and the central nervous system with a poor prognosis, and wild-type isocitrate dehydrogenase (IDH) glioma indicates a worse prognosis. Cuproptosis is a recently discovered form of cell death regulated by copper-dependent mitochondrial respiration. However, the effect of cuproptosis on tumor prognosis and immune infiltration is not clear. In this research, we analyzed of public databases to show the correlation between cuproptosis-related genes and the prognosis of IDH1 wild-type glioma. Nine out of 12 genes were upregulated in IDH1 wild-type glioma patients, and 6 genes were significantly associated with overall survival (OS), while 5 genes were associated with progression-free survival (PFS). Then, we constructed a prognostic cuproptosis-related gene signature for IDH1 wild-type glioma patients. ATP7B was considered an independent prognostic indicator, and a low expression level of ATP7B was related to a shorter period of OS and PFS. Moreover, downregulation of ATP7B was correlated not only with the infiltration of activated NK cells, CD8 + T cells and M2 macrophages; but also with high expression of immune checkpoint genes and tumor mutation burden (TMB). In the IDH1 wild-type glioma tissues we collected, our data also confirmed that high tumor grade was accompanied by low expression of ATP7B and high expression of PD-L1, which was associated with increasing infiltration of CD8 + immune cells. In conclusion, our research constructed a prognostic cuproptosis-related gene signature model to predict the prognosis of IDH1 wild-type glioma. ATP7B is deemed to be a potential prognostic indicator and novel immunotherapy biomarker for IDH1 wild-type glioma patients.


Asunto(s)
ATPasas Transportadoras de Cobre , Glioma , Humanos , Apoptosis , Encéfalo , Linfocitos T CD8-positivos , Muerte Celular , Sistema Nervioso Central , Cobre , Glioma/genética , Isocitrato Deshidrogenasa/genética , ATPasas Transportadoras de Cobre/genética
8.
Nat Commun ; 14(1): 7572, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989747

RESUMEN

Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/patología , Esfingomielinas , Neoplasias Renales/patología , Genes Supresores de Tumor , Transformación Celular Neoplásica/genética , N-Metiltransferasa de Histona-Lisina
9.
Plant Mol Biol ; 113(1-3): 105-120, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37804450

RESUMEN

Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantones , Arabidopsis/metabolismo , Germinación/genética , Proteómica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , Aminoácidos/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Am J Cancer Res ; 13(8): 3705-3720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693154

RESUMEN

Multiple studies have shown that E2 conjugating enzyme family are dysregulated in various cancers and associated with tumor progression and poor prognosis. In present study, we screened and confirmed that UBE2S is one of the E2 conjugating enzymes highly expressed in non-small cell lung cancer (NSCLC), and it plays an oncogenic role by enhancing cell proliferation, migration and stemness in vitro. Using immunoprecipitation technology combined with mass spectrometry assay, we identified ribosomal protein RPL26 as the substrate protein of UBE2S in NSCLC. At the molecular level, overexpression of UBE2S accelerated the ubiquitination and degradation of RPL26, thus upregulating c-Myc to enhance the progression of NSCLC. In addition, the results of a xenograft experiment showed that inhibiting UBE2S could suppress RPL26-c-Myc mediated NSCLC tumor growth in vivo. Our data provided mechanistic evidence supporting the existence of a novel UBE2S-RPL26-c-Myc axis and its critical contribution to progression of NSCLC.

11.
Plant Sci ; 336: 111868, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722507

RESUMEN

Iron (Fe), an essential micronutrient, participates in photosynthesis, respiration, and many other enzymatic reactions. Cadmium (Cd), by contrast, is a toxic element to virtually all living organisms. Both Fe deficiency and Cd toxicity severally impair crop growth and productivity, finally leading to human health issues. Understanding how plants control the uptake and homeostasis of Fe and combat Cd toxicity thus is mandatory to develop Fe-enriched but Cd-cleaned germplasms for human beings. Recent studies in Arabidopsis and rice have revealed that IRON MAN (IMA) peptides stand out as a key regulator to respond to Fe deficiency by competitively interacting with a ubiquitin E3 ligase, thus inhibiting the degradation of IVc subgroup bHLH transcription factors (TFs), mediated by 26 S proteasome. Elevated expression of IMA confers tolerance to Cd stress in both Arabidopsis and wheat by activating the iron deficiency response. Here, we discuss recent breakthroughs that IMA peptides function in the Fe-deficiency response to attain Fe homeostasis and combat Cd toxicity as a potential candidate for phytoremediation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Homeostasis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Methods Mol Biol ; 2665: 75-83, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166594

RESUMEN

Label-free quantitation (LFQ) proteomics, mainly based on the extraction of the peptide (precursor) intensity at the MS1 (mass spectrum 1) level, enables to quantify the relative amount of the proteins among samples. In an LFQ proteomics study, all samples are scanned individually on an advanced mass spectrometer and the chromatographic features of each run are extracted to generate consensus patterns among various runs in the experiment. Here, we describe the LFQ proteomics experimental protocol adapted for plant research, such as plant iron homeostasis.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Proteínas/análisis , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Proteoma/análisis
13.
Cancer Lett ; 562: 216158, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37023940

RESUMEN

Studies have shown that acetylation modification plays an important role in tumor proliferation and metastasis. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is downregulated in certain tumors, as a tumor suppressor role. However, the regulation of LHPP expression and its function in nasopharyngeal carcinoma (NPC) remain unclear. In the present study, we found that LHPP was downregulated in NPC, and overexpression of LHPP inhibited the proliferation and invasion of NPC cells. Mechanistically, HDAC4 deacetylated LHPP at K6 and promoted the degradation of LHPP through TRIM21 mediated K48-linked ubiquitination. HDAC4 was confirmed to be highly expressed in NPC cells and promoted the proliferation and invasion of NPC cells through LHPP. Further research found that LHPP could inhibit the phosphorylation of tyrosine kinase TYK2, thereby inhibiting the activity of STAT1. In vivo, knockdown of HDAC4 or treatment with small molecule inhibitor Tasquinimod targeting HDAC4 could significantly inhibit the proliferation and metastasis of NPC by upregulating LHPP. In conclusion, our finding demonstrated that HDAC4/LHPP signal axis promotes the proliferation and metastasis of NPC through upregulating TYK2-STAT1 phosphorylation activation. This research will provide novel evidence and intervention targets for NPC metastasis.


Asunto(s)
Neoplasias Nasofaríngeas , Transducción de Señal , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/patología , Proteínas Represoras/metabolismo , Pirofosfatasa Inorgánica/metabolismo
14.
J Proteomics ; 280: 104894, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37024075

RESUMEN

Genetic variation in phosphorus utilization efficiency (PUE) widely exists among wheat genotypes. However, the underlying mechanisms are still unclear. Two contrasting wheat genotypes, Heng4399 (H4399) and Tanmai98 (TM98), were screened out from 17 bread wheat genotypes based on shoot soluble phosphate (Pi) concentrations. The TM98 had a significantly higher PUE than the H4399, especially under Pi deficiency. The induction of genes in the PHR1-centered Pi signaling pathway was significantly higher in TM98 than in H4399. Collectively, through a label-free quantitative proteomic analysis, 2110 high-confidence proteins were identified in shoots of the two wheat genotypes. Among them, 244 and 133 proteins were differentially accumulated under Pi deficiency in H4399 and TM98, respectively. The abundance of proteins related to nitrogen and phosphorus metabolic processes, small molecule metabolic process, and carboxylic acid metabolic process weas significantly affected by Pi deficiency in the shoots of the two genotypes. The abundance of proteins in energy metabolism, especially photosynthesis, was decreased by Pi deficiency in the shoots of H4399. Inversely, the PUE-efficient genotype TM98 could maintain protein abundance in energy metabolism. Moreover, the proteins involved in pyruvate metabolism, glutathione metabolism, and sulfolipid biosynthesis were significantly accumulated in TM98, which probably contributed to its high PUE. SIGNIFICANCE: Improving the PUE of wheat is urgent and crucial for sustainable agriculture. Genetic variation among wheat genotypes provides materials for exploring the underlying mechanisms for high PUE. This study selected two wheat genotypes with contrasting PUE to reveal the differences in the physiological and proteomic responses to phosphate deficiency. The PUE-efficiency genotype TM98 greatly induced the expression of genes in the PHR1-centered Pi signaling pathway. Subsequently, the TM98 could maintain the abundance of proteins related to energy metabolism and enhance the abundance of proteins involved in pyruvate metabolism, glutathione metabolism, and sulfolipid biosynthesis to increase PUE under Pi deficiency. The differentially expressed genes or proteins between the genotypes with contrasting PUE would provide potential and basis for breeding wheat varieties with improved phosphorus use efficiency.


Asunto(s)
Proteómica , Triticum , Triticum/metabolismo , Fitomejoramiento , Genotipo , Fósforo/metabolismo , Fosfatos/metabolismo , Glutatión/genética , Glutatión/metabolismo , Piruvatos/metabolismo
15.
Oncogene ; 42(16): 1308-1320, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882523

RESUMEN

Glioblastoma (GBM) is the most common malignant glioma, with a high recurrence rate and a poor prognosis. However, the molecular mechanism behind the malignant progression of GBM is still unclear. In the present study, through the tandem mass tag (TMT)-based quantitative proteomic analysis of clinical primary and recurrent glioma samples, we identified that aberrant E3 ligase MAEA was expressed in recurrent samples. The results of bioinformatics analysis showed that the high expression of MAEA was related to the recurrence and poor prognosis of glioma and GBM. Functional studies showed that MAEA could promote proliferation, invasion, stemness and temozolomide (TMZ) resistance. Mechanistically, the data indicated that MAEA targeted prolyl hydroxylase domain 3 (PHD3) K159 to promote its K48-linked polyubiquitination and degradation, thus enhancing the stability of HIF-1α, thereby promoting the stemness and TMZ resistance of GBM cells through upregulating CD133. The in vivo experiments further confirmed that knocking down MAEA could inhibit the growth of GBM xenograft tumors. In summary, MAEA enhances the expression of HIF-1α/CD133 through the degradation of PHD3 and promotes the malignant progression of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Resistencia a Antineoplásicos/genética , Glioblastoma/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Prolil Hidroxilasas/metabolismo , Proteómica , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
17.
Cancer Sci ; 114(2): 521-532, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36156329

RESUMEN

Glioblastoma (GBM) is the most frequent and aggressive malignant glioma. Due to patients' poor prognosis, it is of great clinical significance to determine new targets that may improve GBM treatment. In the present study, we showed that ubiquitin (Ub)-conjugating enzyme E2T (UBE2T) was significantly overexpressed in GBM and could promote proliferation, invasion, and inhibit apoptosis of GBM cells. Mechanistically, UBE2T functioned as the Ub enzyme of ribosomal protein L6 (RPL6) and induced the ubiquitination and degradation of RPL6 in an E3 ligase-independent manner through direct modification by K48-linked polyubiquitination, thus contributing to the malignant progression of GBM cells. Furthermore, inhibiting the expression of RPL6 by UBE2T could not only reduce the expression of wild-type p53, but also enhance the gain-of-function of mutant p53. Moreover, knockdown of UBE2T in LN229 cells obviously suppressed tumor growth in LN229 xenograft mouse models. Collectively, our study demonstrated that UBE2T promotes GBM malignancy through ubiquitination-mediated degradation of RPL6 regardless of the p53 mutation status. It will provide new candidates for molecular biomarkers and therapeutic targets for clinical application in GBM.


Asunto(s)
Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
18.
J Clin Pharmacol ; 63(4): 410-420, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36394393

RESUMEN

There is significant enterohepatic circulation (EHC) during the disposition of mycophenolic acid (MPA). The aim of this study was to elucidate factors influencing the EHC of MPA in Chinese adult renal allograft recipients. After 2 weeks of therapy with mycophenolate mofetil or enteric-coated mycophenolate sodium, blood samples were collected from 125 patients at 0 to 12 hours post-administration and MPA concentrations were determined. The influence of calcineurin inhibitors (CNIs) and genetic polymorphisms on MPA exposure and EHC was studied. The Shapley additive explanations method was used to estimate the impact of various factors on the area under the plasma drug concentration-time curve (AUC0-12h ) for MPA. An extreme gradient boosting (XGboost) machine learning-based model was established to predict AUC0-12h . Results showed that the dose-normalized AUC6-12h (dn-AUC6-12h ) of MPA was significantly lower in patients co-administered with cyclosporine (CsA) than in patients co-administered with tacrolimus (TAC) (P < .05). For patients co-administered with TAC, patients with ABCC2 C-24T CC or SLCO1B1 T521C TT genotypes had significantly higher values of dn-AUC6-12h (P < .05). Patients with SLCO1B3 334T/699G alleles had significantly lower dn-AUC6-12h values than homozygotes (P < .05). By introducing body weight, age, and EHC-related factors, including co-administered CNIs and genetic polymorphism of drug transporters, as covariates in the XGboost machine learning model, the prediction performance of AUC0-12h for MPA in Chinese adult renal allograft recipients can be improved.


Asunto(s)
Trasplante de Riñón , Ácido Micofenólico , Humanos , Adulto , Ácido Micofenólico/uso terapéutico , Inhibidores de la Calcineurina , Inmunosupresores/uso terapéutico , Trasplante de Riñón/métodos , Pueblos del Este de Asia , Tacrolimus/farmacología , Polimorfismo Genético , Proteínas de Transporte de Membrana/genética , Circulación Enterohepática , Aloinjertos , Área Bajo la Curva , Transportador 1 de Anión Orgánico Específico del Hígado/genética
19.
Am J Cancer Res ; 12(10): 4825-4839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381313

RESUMEN

Glioblastoma (GBM) is the most frequently observed and aggressive type of high-grade malignant glioma. Temozolomide (TMZ) is the primary agent for GBM treatment. However, TMZ resistance remains a major challenge. In this study, we report that MDK is overexpressed in GBM, which leads to enhanced proliferation, apoptosis inhibition, increased invasion and TMZ resistance in GBM cells. It was also determined that MDK could significantly improve the stem-like properties of GBM cells. Mechanistically, MDK enhanced p-JNK through Notch1 and subsequently increased the expression of stemness markers, such as CD133 and Nanog, thereby promoting TMZ resistance. Finally, xenograft experiments and clinical sample analysis also demonstrated that MDK knockdown could significantly inhibit tumor growth in vivo, and the expression of MDK was positively correlated with Notch1, p-JNK and CD133. This study revealed that MDK induces TMZ resistance by improving the stem-like properties of GBM by upregulating the Notch1/p-JNK signaling pathway, which provides a possible target for therapeutic intervention of GBM, especially in TMZ-resistant GBM with high MDK expression.

20.
Ther Drug Monit ; 44(6): 738-746, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070781

RESUMEN

BACKGROUND: To predict mycophenolic acid (MPA) exposure in renal transplant recipients using a deep learning model based on a convolutional neural network with bilateral long short-term memory and attention methods. METHODS: A total of 172 Chinese renal transplant patients were enrolled in this study. The patients were divided into a training group (n = 138, Ruijin Hospital) and a validation group (n = 34, Zhongshan Hospital). Fourteen days after renal transplantation, rich blood samples were collected 0-12 hours after MPA administration. The plasma concentration of total MPA was measured using an enzyme-multiplied immunoassay technique. A limited sampling strategy based on a convolutional neural network-long short-term memory with attention (CALS) model for the prediction of the area under the concentration curve (AUC) of MPA was established. The established model was verified using the data from the validation group. The model performance was compared with that obtained from multiple linear regression (MLR) and maximum a posteriori (MAP) methods. RESULTS: The MPA AUC 0-12 of the training and validation groups was 54.28 ± 18.42 and 41.25 ± 14.53 µg·ml -1 ·h, respectively. MPA plasma concentration after 2 (C 2 ), 6 (C 6 ), and 8 (C 8 ) hours of administration was the most significant factor for MPA AUC 0-12 . The predictive performance of AUC 0-12 estimated using the CALS model of the validation group was better than the MLR and MAP methods in previous studies (r 2 = 0.71, mean prediction error = 4.79, and mean absolute prediction error = 14.60). CONCLUSIONS: The CALS model established in this study was reliable for predicting MPA AUC 0-12 in Chinese renal transplant patients administered mycophenolate mofetil and enteric-coated mycophenolic acid sodium and may have good generalization ability for application in other data sets.


Asunto(s)
Aprendizaje Profundo , Trasplante de Riñón , Humanos , Ácido Micofenólico/uso terapéutico , Trasplante de Riñón/métodos , Inmunosupresores/uso terapéutico , Quimioterapia Combinada , Área Bajo la Curva , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...