Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095148

RESUMEN

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Asunto(s)
Carbono , Colorantes Fluorescentes , Mercurio , Puntos Cuánticos , Contaminantes Químicos del Agua , Mercurio/análisis , Carbono/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Puntos Cuánticos/química , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia/métodos , Límite de Detección , Fluorescencia
3.
EMBO J ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349845

RESUMEN

The Krebs cycle byproduct itaconate has recently emerged as an important metabolite regulating macrophage immune functions, but its role in tumor cells remains unknown. Here, we show that increased tumor-intrinsic cis-aconitate decarboxylase (ACOD1 or CAD, encoded by immune-responsive gene 1, Irg1) expression and itaconate production promote tumor immunogenicity and anti-tumor immune responses. Furthermore, we identify thimerosal, a vaccine preservative, as a specific inducer of IRG1 expression in tumor cells but not in macrophages, thereby enhancing tumor immunogenicity. Mechanistically, thimerosal induces itaconate production through a ROS-RIPK3-IRF1 signaling axis in tumor cells. Further, increased IRG1/itaconate upregulates antigen presentation-related gene expression via promoting TFEB nuclear translocation. Intratumoral injection of thimerosal induced itaconate production, activated the tumor immune microenvironment, and inhibited tumor growth in a T cell-dependent manner. Importantly, IRG1 deficiency markedly impaired tumor response to thimerosal treatment. Furthermore, itaconate induction by thimerosal potentiates the anti-tumor efficacy of adoptive T-cell therapy and anti-PD1 therapy in a mouse lymphoma model. Hence, our findings identify a new role for tumor intrinsic IRG1/itaconate in promoting tumor immunogenicity and provide a translational means to increase immunotherapy efficacy.

4.
Cancer Gene Ther ; 31(10): 1571-1584, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39183354

RESUMEN

Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.


Asunto(s)
Caspasa 9 , Genes Transgénicos Suicidas , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Receptores Quiméricos de Antígenos , Rabdomiosarcoma , Rabdomiosarcoma/terapia , Rabdomiosarcoma/genética , Animales , Humanos , Ratones , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis , Femenino
6.
Environ Technol ; : 1-12, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887014

RESUMEN

2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 µg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.HighlightsNovel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.

7.
Cancer Lett ; 597: 217081, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909776

RESUMEN

We recently revealed that activated STING is secreted into RAB22A-induced extracellular vesicles (R-EVs) and promotes antitumor immunity in cancer cells. Whether mesenchymal stem cell (MSC)-derived R-EVs containing activated STING can be used as a novel antitumor immunotherapy remains unclear, as MSC-derived EVs are promising cell-free therapeutics due to their superior biocompatibility and safety, as well as low immunogenicity. Here, we report that induced pluripotent stem cell (iPSC)-derived MSCs can generate R-EVs with a size and mechanism of formation that are similar to those of R-EVs produced from cancer cells. Furthermore, these MSC-derived R-EVs containing activated STING induced IFNß expression in recipient THP-1 monocytes and antitumor immunity in mice. Our findings reveal that the use of MSC-derived R-EVs containing activated STING is a promising cell-free strategy for antitumor immunity.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Proteínas de la Membrana , Células Madre Mesenquimatosas , Animales , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Interferón beta/metabolismo , Interferón beta/inmunología , Células THP-1 , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Línea Celular Tumoral
8.
J Autoimmun ; 147: 103233, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797049

RESUMEN

Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Receptor Cannabinoide CB2 , Esclerodermia Sistémica , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Células Th2 , Animales , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Células Th2/inmunología , Ratones , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Humanos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Femenino , Quinasas Janus/metabolismo , Masculino , Ratones Noqueados , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Bleomicina , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Persona de Mediana Edad
9.
Food Chem X ; 22: 101369, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38633743

RESUMEN

Malolactic fermentation (MLF) is a crucial process to enhance wine quality, and the utilization of indigenous microorganisms has the potential to enhance wine characteristics distinct to a region. Here, the MLF performance of five indigenous Oenococcus oeni strains and six synthetic microbial communities (SynComs), were comparatively evaluated in Cabernet Sauvignon wine. In terms of malate metabolism rate and wine aroma diversity, the strain of O. oeni Oe114-46 demonstrated comparable MLF performance to the commercial strain of O. oeni Oe450 PreAc. Furthermore, the corresponding SynComs (Oe144-46/LpXJ25) exhibited improved fermentation properties, leading to increased viable cell counts of both species, more rapid and thorough MLF, and increased concentrations of important aroma compounds, such as linalool, 4-terpinenol, α-terpineol, diethyl succinate, and ethyl lactate. These findings highlight the remarkable MLF performance of indigenous O. oeni and O. oeni-L. plantarum microbial communities, emphasizing their immense potential in improving MLF efficiency and wine quality.

10.
J Hazard Mater ; 469: 133977, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492395

RESUMEN

The immunogenicity of haptens determines the performance of the resultant antibody for small molecules. Rigidity is one of the basic physicochemical properties of haptens. However, few studies have investigated the effect of hapten rigidity on the strength of an immune response and overall antibody performance. Herein, we introduce three molecular descriptors that quantify hapten rigidity. By using of these descriptors, four rifamycin haptens with varied rigidity were designed. The structural and physicochemical feasibility of the designed haptens was then assessed by computational chemistry. Immunization demonstrated that the strength of induced immune responses, i.e., the titer and affinity of antiserum, was significantly increased with increased rigidity of haptens. Furthermore, molecular dynamic simulations demonstrated conformation constraint of rigid haptens contributed to the initial binding and activation of naïve B cells. Finally, a highly sensitive indirect competitive enzyme-linked immunosorbent assay was developed for detection of rifaximin, with an IC50 of 1.1 µg/L in buffer and a limit of detection of 0.2-11.3 µg/L in raw milk, river water, and soil samples. This work provides new insights into the effect of hapten rigidity on immunogenicity and offers new hapten design strategies for antibody discovery and vaccine development of small molecules.


Asunto(s)
Anticuerpos , Rifamicinas , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo , Haptenos
11.
Int J Biol Macromol ; 263(Pt 1): 130153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367778

RESUMEN

Vegetable oils-based pressure sensitive adhesives (PSAs) are green and sustainable but face unsatisfactory adhesion strengths and are prone to aging during storage and application due to the existence of residual double bonds and massive ester bonds. Nine common antioxidants (tea polyphenol palmitate (TPP), caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, and tea polyphenols) were grafted into epoxidized soybean oils-PSA (ESO-PSA) system to enhance antiaging properties and adhesion strengths. Results showed ESO-PSAs grafted with caffeic acid, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, tea polyphenols, or TPP didn't occur failure with TPP having best performance. The optimal conditions were ESO reacted with 0.9 % TPP, 70 % rosin ester, and 7.0 % phosphoric acid at 50 °C for 5 min, under which peel strength and loop tack increased to 2.460 N/cm and 1.66 N, respectively, but peel strength residue reduced to 138.09 %, compared with control (0.407 N/cm, 0.43 N, and 1669.99 %). Differential scanning calorimetry and thermogravimetric results showed TPP grafting increased the glass transition temperature of ESO-PSA slightly but improved its thermal stability significantly. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance results showed TPP, phosphoric acid, and rosin ester all partially participated in the covalently crosslinking polymerization of ESO-PSAs and the rest existed in the network structures in the free form.


Asunto(s)
Hidroxianisol Butilado , Ácidos Cafeicos , Ácidos Fosfóricos , Aceite de Soja , Humanos , Masculino , Aceite de Soja/química , Hidroxianisol Butilado/análisis , Galato de Propilo , Polifenoles , Adhesivos/química , Antígeno Prostático Específico , Ésteres ,
12.
Food Microbiol ; 119: 104460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225043

RESUMEN

It is well-known that the co-inoculation of Saccharomyces cerevisiae and non-Saccharomyces strains can modulate and improve the aromatic quality of wine through their multi-level interactions. However, the individual contribution of metabolic interaction (MI) and physical interaction (PI) on wine volatiles remains poorly understood. In this work, we utilized a double-compartment bioreactor to examine the aromatic effect of MI and PI by comparing the volatiles production in Torulaspora delbrueckii and Saccharomyces cerevisiae single fermentations to their mixed fermentations with or without physical separation. Results showed that the PI between T. delbrueckii and S. cerevisiae increased the production of most aroma compounds, especially for acetate esters and volatile fatty acids. In comparison, the MI only promoted a few volatile compounds, including ethyl decanoate, isoamyl acetate, and isobutanol. Noticeably, the MI significantly decreased the levels of ethyl dodecanoate, 2-phenylethyl alcohol, and decanoic acid, which exhibited opposite profiles in PI. Our results indicated that the PI was mainly responsible for the improved volatiles in T. delbrueckii/S. cerevisiae mixed fermentation, while the MI can be targeted to modulate the specific aroma compounds. A thorough understanding of the PI and MI aromatic effect will empower winemakers to accurately and directionally control the volatile profile of the wine, promoting the application of multi-starters to produce diverse styles of wines.


Asunto(s)
Torulaspora , Vino , Fermentación , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Vino/análisis , Acetatos/metabolismo
13.
Food Microbiol ; 119: 104458, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225057

RESUMEN

In this study, we conducted a comprehensive investigation into a GH3 family ß-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.


Asunto(s)
Oenococcus , Vino , Vino/análisis , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Odorantes/análisis , Etanol/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Fermentación
14.
Food Chem ; 438: 137958, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38000159

RESUMEN

Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.


Asunto(s)
Vitis , Vitis/metabolismo , Frutas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Acetatos/farmacología , Acetatos/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Terpenos/metabolismo
15.
Cell Mol Immunol ; 21(1): 60-79, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38062129

RESUMEN

The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.


Asunto(s)
Dioxanos , Inhibidores de Puntos de Control Inmunológico , Terapia de Inmunosupresión , Neoplasias Pulmonares , Proteína con Dominio Pirina 3 de la Familia NLR , Nitrobencenos , Proteínas Proto-Oncogénicas c-bcl-2 , Pirroles , Macrófagos Asociados a Tumores , Animales , Ratones , Dioxanos/farmacología , Dioxanos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Nitrobencenos/farmacología , Nitrobencenos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/agonistas , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Pirroles/farmacología , Pirroles/uso terapéutico , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Factor de Transcripción ReIA/metabolismo , Microambiente Tumoral/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos C57BL , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Terapia de Inmunosupresión/métodos
16.
Environ Sci Pollut Res Int ; 31(3): 4318-4329, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100024

RESUMEN

Mercury ion (Hg2+) is a highly toxic and ubiquitous pollutant, whose effective detection has aroused widespread concern. A novel ratiometric fluorescent sensor has been designed to rapidly and efficiently detect Hg2+ based on blue/red carbon dots (CDs) with environmental friendliness. This sensor was well characterized via TEM, FTIR, XPS, UV-vis, and zeta potential analysis and displayed excellent fluorescence properties and stability. The fluorescence of blue CDs at 447 nm was significantly quenched with the addition of Hg2+ resulted from the static quenching, whereas that of red CDs at 650 nm remained invariable. A sensitive method for Hg2+ determination was constructed in the range of 0.05-7.0 nmol mL-1 with optimal conditions, and the detection limit was down to 0.028 nmol mL-1. Meanwhile, compared to other 17 metal ions, the ratiometric fluorescent sensor exhibited high selectivity for Hg2+. Furthermore, satisfied recoveries had also been obtained for measuring trace Hg2+ in practical environmental samples. This developed ratiometric fluorescent sensor provided a reliable, environmental-friendly, rapid, and efficient platform for the detection of Hg2+ in environmental applications.


Asunto(s)
Mercurio , Puntos Cuánticos , Espectrometría de Fluorescencia/métodos , Mercurio/análisis , Colorantes Fluorescentes , Carbono , Iones , Límite de Detección
17.
Hortic Res ; 10(11): uhad205, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38046853

RESUMEN

Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.

18.
Food Chem X ; 20: 101049, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144856

RESUMEN

The effects of tea polyphenols (TP) on the quality of palm oils (PO) and losses of endogenous vitamin E during batch frying of instant noodles as well as oxidative stability of fried instant noodles were investigated. PO without antioxidant addition was negative control and with tertiary butylhydroquinone (TBHQ) addition positive control. TP and TBHQ addition inhibited the increase of peroxide, p-anisidine, and total oxidation values of PO and reduced tocopherol and tocotrienol losses with 200 mg/kg of TP having the best performance, but didn't affect acid value and triglyceride composition. 200 mg/kg of TP and 100 mg/kg of TBHQ inhibited unsaturated fatty acid losses. During frying, TBHQ was mainly volatilized but TP transformed. TP more effectively reduced tocopherol and tocotrienol losses than TBHQ, reducing PO deterioration. The extended lifecycles of PO and shelf life of fried instant noodles are attributed to nonvolatility of TP and antioxidative properties of its transformation products.

19.
Nat Cancer ; 4(3): 382-400, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894639

RESUMEN

Immunotherapies targeting the PD-1/PD-L1 axis have become first-line treatments in multiple cancers. However, only a limited subset of individuals achieves durable benefits because of the elusive mechanisms regulating PD-1/PD-L1. Here, we report that in cells exposed to interferon-γ (IFNγ), KAT8 undergoes phase separation with induced IRF1 and forms biomolecular condensates to upregulate PD-L1. Multivalency from both the specific and promiscuous interactions between IRF1 and KAT8 is required for condensate formation. KAT8-IRF1 condensation promotes IRF1 K78 acetylation and binding to the CD247 (PD-L1) promoter and further enriches the transcription apparatus to promote transcription of PD-L1 mRNA. Based on the mechanism of KAT8-IRF1 condensate formation, we identified the 2142-R8 blocking peptide, which disrupts KAT8-IRF1 condensate formation and consequently inhibits PD-L1 expression and enhances antitumor immunity in vitro and in vivo. Our findings reveal a key role of KAT8-IRF1 condensates in PD-L1 regulation and provide a competitive peptide to enhance antitumor immune responses.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Humanos , Línea Celular Tumoral , Antígeno B7-H1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Interferón gamma/genética , Interferón gamma/farmacología , Inmunoterapia , Histona Acetiltransferasas/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo
20.
Mol Plant ; 16(4): 726-738, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843324

RESUMEN

Hybrid rice has made considerable contributions to achieve the ambitious goal of food security for the world's population. Hybrid rice from indica/xian and japonica/geng subspecies shows much higher heterosis and is thereby an important innovation in promoting rice production in the next decade. However, such inter-subspecific hybrid rice has long suffered from serious hybrid sterility, which is a major challenge that needs to be addressed. In this study, we performed a genome design strategy to produce fertile inter-subspecific hybrid by creation of wide compatibility varieties that are able to overcome hybrid sterility. Based on combined genetic analyses in two indica-japonica crosses, we determined that four hybrid sterility loci, S5, f5, pf12 and Sc, are the major QTLs controlling inter-subspecific hybrid sterility and thus the minimal targets that can be manipulated for breeding sub-specific hybrid rice. We then cloned the pf12 locus, one of the most effective loci for hybrid male sterility, by map-based cloning, and showed that artificial disruption of pf12A gene at this locus could successfully rescue hybrid fertility. We further dissected the genetic basis of wide compatibility using three pairwise crosses from a wide-compatibility variety Dular and representative indica and japonica varieties. On this basis, we constructed and assembled different combinations of naturally compatible alleles of four loci, S5, Sc, pf12, and f5, and found that the improved lines could fully recover pollen and embryo sac fertility in test-crossed F1s, thereby completely fulfilling the demands of inter-subspecific hybrid spikelet fertility in agricultural production. This breeding scheme would facilitate redesign of future inter-subspecific hybrid rice with a higher yield potential.


Asunto(s)
Infertilidad , Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Fertilidad/genética , Infertilidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...