Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(23): 34368-34380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703317

RESUMEN

Manganese-based (Mn-based) nanomaterials (NMs) have great potential as alternatives to conventional Mn fertilizers. Yet, its environmental risks and effects on plant growth are not completely well understood. This study investigated the physiological effects of manganese dioxide (MnO2) and manganese tetroxide (Mn3O4) NMs on inter-root exposure (0-500 mg/L) of hydroponically grown rice. The results showed that on inter-root exposure, 50 mg/L Mn-based NMs promoted the uptake of mineral elements and enhanced the enzymatic activities of antioxidant systems (CAT and SOD) in rice, whereas 500 mg/L Mn3O4 NMs disrupted the mineral element homeostasis and led to phytotoxicity. The promotion effect of MnO2 NMs was better, firstly because MnO2 NMs treatment had lower Mn content in the plant than Mn3O4 NMs. In addition, MnO2 NMs are more transported and absorbed in the plant in ionic form, while Mn3O4 NMs exist in granular form. MnO2 NMs and Mn3O4 NMs both can be used as nano-fertilizers to improve the growth of rice by inter-root application, but the doses should be carefully selected.


Asunto(s)
Manganeso , Oryza , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Manganeso/toxicidad , Fertilizantes , Nanoestructuras/toxicidad , Compuestos de Manganeso , Óxidos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
2.
Plant Physiol Biochem ; 207: 108428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38364633

RESUMEN

Manganese (Mn) is one of the essential elements for plant growth and is involved in the process of photosynthesis and seed germination. Herein, we applied two Mn-based nanoparticles, MnO2 and Mn3O4, to the soil to investigate their effects on radish growth, antioxidant system, and nutrients. The radish plant height after treatment with 10 mg/kg of MnO2 and Mn3O4 NPs were increased, compare to the control. In radish's shoot, MnO2 NPs at high concentrations (100 mg/kg) increased MDA activity by 58 % compared to the control group, while exposure to Mn3O4 NPs at the same concentration decreased MDA activity by 14 %. The nutrient content of radishes, such as soluble sugar and vitamin C, was improved. Moreover, single particle inductively coupled plasma mass spectrometry (SP ICP-MS) was used to understand the patterns of migration of Mn-based NPs in radish and subsequent impact on nutrients. We found that Mn-based NPs accumulated mainly in the roots of radish. Interestingly, the accumulation characteristics of MnO2 NPs and Mn3O4 NPs were different. MnO2 NPs accumulated more in radish leaves than in fruits, while the accumulation of Mn3O4 NPs gradually decreased from roots to leaves. Finally, we determined the mineral element content of the leaves, fruits, and roots of radish, and found that the uptake of main metallic mineral elements (e.g. Cu, Fe, Mg, Zn, Na, K) was inhibited by the application of Mn-based NPs. These findings underscore the importance of considering species and multifaceted impacts of Mn-based NPs as nanofertilizers for their wide application in agriculture.


Asunto(s)
Nanopartículas , Raphanus , Raphanus/química , Manganeso/farmacología , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Minerales/farmacología
3.
Sci Total Environ ; 916: 170013, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242452

RESUMEN

Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.


Asunto(s)
Nanoestructuras , Eliminación de Residuos , Contaminantes del Suelo , Animales , Humanos , Suelo , Aguas del Alcantarillado , Ecosistema , Alimentos , Contaminantes del Suelo/análisis , Ambiente , Aditivos Alimentarios , Agua
4.
J Agric Food Chem ; 71(51): 20405-20418, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38032362

RESUMEN

Global warming has posed significant pressure on agricultural productivity. The resulting abiotic stresses from high temperatures and drought have become serious threats to plants and subsequent global food security. Applying nanomaterials in agriculture can balance the plant's oxidant level and can also regulate phytohormone levels and thus maintain normal plant growth under heat and drought stresses. Nanomaterials can activate and regulate specific stress-related genes, which in turn increase the activity of heat shock protein and aquaporin to enable plants' resistance against abiotic stresses. This review aims to provide a current understanding of nanotechnology-enhanced plant tolerance to heat and drought stress. Molecular mechanisms are explored to see how nanomaterials can alleviate abiotic stresses on plants. In comparison with organic molecules, nanomaterials offer the advantages of targeted transportation and slow release. These advantages help the nanomaterials in mitigating drought and heat stress in plants.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Respuesta al Choque Térmico , Estrés Fisiológico/genética
5.
Environ Sci Technol ; 57(19): 7547-7558, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37134233

RESUMEN

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.


Asunto(s)
Nanopartículas , Níquel , Níquel/química , Glycine max , Nitrógeno , Suelo
6.
Sci Total Environ ; 878: 163203, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37004776

RESUMEN

Iodine deficiency can cause thyroid disease, a serious health problem that has been affecting humans since several years. The biofortification of plants with iodine is an effective strategy for regulating iodine content in humans. In addition, radioiodine released into the atmosphere may contaminate terrestrial ecosystem along with dry or wet deposition and its accumulation in plants may cause exposure risks to humans via food chain. Recent progress in understanding the mechanisms related to iodine uptake, elementary speciation, dynamic transportation, nutritional role, and toxicity in plants is reviewed here. First, we introduced the iodine cycle in a marine-atmosphere-land system. The content and speciation of iodine in plants under natural conditions and biofortification backgrounds were also analyzed. We then discussed the mechanisms of iodine uptake and efflux by plants. The promotion or inhibition effects of iodine on plant growth were also investigated. Finally, the participation of radioiodine in plant growth and its safety risks along the food chain were evaluated. Furthermore, future challenges and opportunities for understanding the participation of iodine in plants have been outlined.


Asunto(s)
Biofortificación , Yodo , Humanos , Radioisótopos de Yodo , Ecosistema
7.
Environ Sci Ecotechnol ; 15: 100252, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36891261

RESUMEN

Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.

8.
Environ Pollut ; 320: 121063, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639045

RESUMEN

Rice is known to accumulate cadmium (Cd) in its grains, causing a severe threat to billions of people worldwide. The possible phytotoxicity and mechanism of 50-200 mg/L hydroxyapatite NPs (nHA), iron oxide NPs (nFe2O3) or nano zero valent iron (nZVI) co-exposed with Cd (100 µM) in rice seedlings were investigated. Three types of nanoparticles significantly reduced the bioaccumulation of Cd in rice shoots by 16-63%, with nZVI showing the greatest effect, followed by nHA and nFe2O3. A decrease in Cd content in the roots was observed only in the nZVI treatment, with values ranging from 8 to 19%. Correspondingly, nZVI showed the best results in promoting plant growth, increasing rice plant height, shoot and root biomass by 13%, 29% and 42%. In vitro studies showed that nZVI reduced the content of Cd in the solution by 20-52% through adsorption, which might have contributed to the immobilization of Cd in root. Importantly, the nZVI treatment resulted in 267% more iron plaques on the root surface, which acted as a barrier to hinder the entry of Cd. Moreover, all three nanoparticles significantly reduced the oxidative stress induced by Cd by regulating phytohormones, phytochelatin, inorganic homeostasis and the expression of genes associated with Cd uptake and transport. Overall, this study elucidates for the first time the multiple complementing mechanisms for some nanoparticles to reduce Cd uptake and transport in rice and provides theoretical basis for applying nanoparticles for reducing Cd accumulation in edible plants.


Asunto(s)
Cadmio , Hierro , Nanopartículas , Oryza , Contaminantes del Suelo , Humanos , Cadmio/análisis , Cadmio/toxicidad , Hierro/análisis , Nanopartículas/toxicidad , Oryza/metabolismo , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantones , Contaminantes del Suelo/análisis
9.
Environ Sci Pollut Res Int ; 30(7): 18880-18889, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36219299

RESUMEN

Since less attention has been paid to the physiological effects of manganese-based nanomaterials (Mn-based NMs) on plants, it is necessary to explore the application of Mn-based NMs in improving crop yield and the concentration range of Mn-based NMs that produce toxicity. The results showed that soil application of 100 mg/kg manganese oxide (MnO2) and manganese tetroxide (Mn3O4) NMs could increase the shoot height of soybean by 51.8% and 31.8%, respectively, compared with the control. In addition, 100 mg/kg MnO2 NMs increased catalase (CAT) activity in roots by 62.2%, and 50 mg/kg Mn3O4 NMs increased CAT activity in roots by 200%, thereby increasing the stress resistance of soybean. However, at the highest concentration of 500 mg/kg, Mn-based NMs increased the Mn content in soybean extremely so that the absorption of mineral elements such as potassium, phosphorus, and calcium in the root was inhibited. This research lays the foundation for the safe application of Mn-based NMs in agriculture, benefiting the development of nanotechnology and agriculture globally.


Asunto(s)
Manganeso , Nanoestructuras , Manganeso/farmacología , Antioxidantes/farmacología , Compuestos de Manganeso , Glycine max , Óxidos/farmacología , Minerales , Homeostasis
10.
Chemosphere ; 310: 136663, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36206918

RESUMEN

Lithium (Li) is gaining attention due to rapid rise in modern industries but their ultimate fingerprints on plants are not well established. Herein, we executed a meta-analysis of the existing recent literature investigating the impact of Li sources and levels on plant species under different growth conditions to understand the existing state of knowledge. Toxic effects of Li exposure in plants varies as a function of medium and interestingly, more negative responses are reported in hydroponic media as compared to soil and foliar application. Additionally, toxic effects of Li vary with Li source materials and LiCl more negatively affected plant development parameters such as plant germination (n = 48) and root biomass (n = 57) and recorded highly uptake in plants (n = 78), while LiNO3 has more negative effects on shoot biomass. The Li at <50 mg L-1 concentrations significantly influenced the plant physiological indicators including plant germination and root biomass, while 50-500 mg L-1 Li concentration influence the biochemical parameters. The dose-response relationship (EC50) ranges regarding the exposure medium of Li sources in plant species were observed 24.6-196.7 ppm respectively. The uptake potential of Li is dose-dependent and their translocation/bioaccumulation remains unknown. Future work should include full life cycle studies of the crops to elucidate the bioaccumulation of Li in edible tissues and to investigate possible trophic transfer of Li.


Asunto(s)
Litio , Contaminantes del Suelo , Litio/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Bioacumulación , Plantas
11.
Pest Manag Sci ; 79(1): 21-36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36196678

RESUMEN

Nanotechnology is a young branch of the discipline generated by nanomaterials. Its development has greatly contributed to technological progress and product innovation in the field of agriculture. The antimicrobial properties of nanoparticles (NPs) can be used to develop nanopesticides for plant protection. Plant diseases caused by bacterial and fungal infestations are the main types of crop diseases. Once infected, they will seriously threaten crop growth, reduce yield and quality, and affect food safety, posing a health risk to humans. We reviewed the application of metal-based nanoparticles in inhibiting plant pathogenic bacteria and fungi, and discuss the antibacterial mechanisms of metal-based nanoparticles from two aspects: the direct interaction between nanoparticles and pathogens, and the indirect effects of inducing plant resilience to disease. © 2022 Society of Chemical Industry.


Asunto(s)
Bacterias , Nanotecnología , Humanos
12.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500783

RESUMEN

The application of nanomaterials (NMs) in agriculture has become a global concern in recent years. However, studies on their effects on plants are still limited. Here, we conducted a seed germination experiment for 5 days and a hydroponics experiment for 14 days to study the effects of silicon dioxide NMs(nSiO2) and silicon carbide NMs(nSiC) (0,10, 50, 200 mg/L) on rice (Oryza sativa L.). Bulk SiO2 (bSiO2) and sodium silicate (Na2SiO3) were used as controls. The results showed that nSiO2 and nSiC increased the shoot length (11-37%, 6-25%) and root length (17-87%, 59-207%) of germinating seeds, respectively, compared with the control. Similarly, inter-root exposure to nSiO2, bSiO2, and nSiC improved the activity of aboveground catalase (10-55%, 31-34%, and 13-51%) and increased the content of trace elements magnesium, copper, and zinc, thus promoting the photosynthesis of rice. However, Na2SiO3 at a concentration of 200 mg/L reduced the aboveground and root biomass of rice by 27-51% and 4-17%, respectively. This may be because excess silicon not only inhibited the activity of root antioxidant enzymes but also disrupted the balance of mineral elements. This finding provides a new basis for the effect of silica-based NMs promotion on seed germination and rice growth.

13.
NanoImpact ; 28: 100420, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038133

RESUMEN

People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.


Asunto(s)
Plaguicidas , Humanos , Zinc/uso terapéutico
14.
Molecules ; 27(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897903

RESUMEN

For hundreds of years, Atractylodes chinensis (DC.) Koidz. (AK) has been widely used as a treatment for spleen and stomach diseases in China. The AK polysaccharides (AKPs) have been thought to be the important bioactive components. In this stud, the impacts of different extraction methods were analyzed. The differences between AKPs extracted by hot water extraction (HWE), AKPs extracted by ultrasonic extraction (UAE), and AKPs extracted by enzyme extraction (EAE) were compared in terms of yield, total carbohydrate content, molecular weight distribution, monosaccharide composition, and synergistic activity of the AKPs with apatinib were determined. The results indicated that the yield of the polysaccharide obtained from HWE was higher than that of UAE and EAE. However, activity assays indicated that UAE-AKPs and HWE-AKPs enhanced apoptosis of human gastric cancer cells (SGC-7901) treated with apatinib and UAE-AKPs showed the strongest synergistic activities. This is also in agreement with the fact that UAE-AKPs have a smaller molecular weight, ß-configuration, and higher galactose content. These findings suggested that UAE is an efficient and environmentally friendly method for producing new polysaccharides from Atractylodes chinensis (DC.) Koidz. for the development of natural synergist and for the treatment of gastric cancer.


Asunto(s)
Atractylodes , Neoplasias Gástricas , Atractylodes/química , Humanos , Polisacáridos/química , Polisacáridos/farmacología , Piridinas/farmacología , Agua
15.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897935

RESUMEN

Platycodon grandiflorum is an edible and medicinal plant, and polysaccharides are one of its important components. To further improve the utilization rate of P. grandiflorum, we investigated the effects of four different extraction methods, including hot water, ultrasonic-assisted, acid-assisted, and alkali-assisted extractions, on the polysaccharides, which were named PG-H, PG-U, PG-C, and PG-A. The findings indicated that the extraction method had a significant impact on the yield, characteristics, and immunoregulatory activity. We observed that the yields decreased in the following order: PG-H, PG-U, PG-C, and PG-A. Galacturonic acid, glucose, galactose, and arabinose were the most prevalent monosaccharides in the four PGs. However, their proportions varied. In addition, the difference between the content of glucose and galacturonic acid was more significant. PG-U had the highest glucose content, whereas PG-C had the lowest. Galacturonic acid content was highest in PG-A, while the lowest in PG-U. The molecular weight decreased in the order of PG-U, PG-H, PG-C, and PG-A; the particle size was in the order of PG-U, PG-A, PG-H, and PG-C. Moreover, the extraction method had a great impact on immunoregulatory activity. The ability to stimulate the immune function of macrophages was as follows: PG-A > PG-C > PG-U > PG-H. The results indicated that PGs, with lower molecular weights and higher GalA content, exhibited better immune-stimulating activity. And more important the AAE method was a good way to extract polysaccharides from Platycodon grandiflorum for use as a functional product and immunological adjuvant.


Asunto(s)
Platycodon , Glucosa , Inmunidad , Raíces de Plantas , Polisacáridos/farmacología
16.
Environ Pollut ; 309: 119755, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35839973

RESUMEN

The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Agricultura , Tecnología Química Verde/métodos , Nanotecnología , Extractos Vegetales , Plantas
17.
NanoImpact ; 25: 100388, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559894

RESUMEN

Iron (Fe) deficiency is a pervasive nutritional disorder, and producing vegetables enriched with Fe as a dietary source is imperative. Herein, Fe3O4, FeO(OH), α-Fe2O3, ß-Fe2O3, γ-Fe3O4, and nZVI nanoparticles (NPs) were applied in soil as fertilizer to enhance the Fe nutrition in cherry radish. The highest enhancement of Fe content (58%) was observed in Fe3O4 treatment at 100 mg kg-1, followed by FeO(OH) (49%), α-Fe2O3 (24%), nZVI (14%), ß-Fe2O3 (13%) and γ-Fe3O4 (4%). The daily intake of Fe was 97-104% and 77-91% with Fe3O4 and FeO(OH) at 100-200 mg kg-1, respectively. Moreover, the zinc, vitamin C and crude protein contents were also increased by 37, 48 and 67% under Fe3O4 treatment as compared to control. Fe3O4 at 100 mg kg-1 also increased the essential amino acids (phenylalanine, leucine and isoleucine) contents by 11-14%. These data suggest that Fe3O4 and FeO(OH) NPs could be effective nanofertilizers to enhance Fe nutrition in plants.


Asunto(s)
Nanopartículas , Raphanus , Fertilizantes , Hierro , Valor Nutritivo
18.
Front Chem ; 9: 629054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327190

RESUMEN

Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.

19.
J Hazard Mater ; 415: 125574, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756203

RESUMEN

The massive application of rare earth elements (REEs) in electronic industries cause their inevitable release into the environment; however, its effects on soil biota remain largely unaddressed. We investigated the E. fetida detoxification potential of nano and bulk La2O3 and Yb2O3 and their potential impact on biochemical and genetic markers at 50, 100, 200, 500 and 1000 mg kg-1 concentration. We found that earthworms bioremediate 3-15% La2O3 and Yb2O3 contaminated soil at low and medium levels, while this potential was limited at higher levels. Nano and bulk La2O3 and Yb2O3 treatment induced neurotoxicity in earthworm by inhibiting acetylcholinesterase by 49-65% and 22-36% at 500 and 1000 mg kg-1, respectively. Nano La2O3 proved to be highly detrimental, mainly through oxidative stress and subsequent failure of antioxidant system. Nano La2O3 and Yb2O3 at 100 mg kg-1 significantly down-regulated the expression of annetocin mRNA in the parental and progeny earthworms by 50% and 20%, which is crucial for earthworm reproduction. Similarly, expression level of heat shock protein 70 (HSP70) and metallothionein was significantly upregulated in both generations at medium exposure level. Histological observations showed that nano REEs at 200 mg kg-1 induced drastic changes in the intestinal epithelium and typhlosole of E. fetida. To date, our results enhance the understanding of interaction between REEs and earthworms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Lantano/toxicidad , Oligoquetos/genética , Óxidos/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Iterbio
20.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374410

RESUMEN

Nanotechnology is playing a significant role in addressing a vast range of environmental challenges by providing innovative and effective solutions. Heavy metal (HM) contamination has gained considerable attention in recent years due their rapidly increasing concentrations in agricultural soil. Due to their unique physiochemical properties, nanoparticles (NPs) can be effectively applied for stress alleviation. In this review, we explore the current status of the literature regarding nano-enabled agriculture retrieved from the Web of Science databases and published from January 2010 to November 2020, with most of our sources spanning the past five years. We briefly discuss uptake and transport mechanisms, application methods (soil, hydroponic and foliar), exposure concentrations, and their impact on plant growth and development. The current literature contained sufficient information about NPs behavior in plants in the presence of pollutants, highlighting the alleviation mechanism to overcome the HM stress. Furthermore, we present a broad overview of recent advances regarding HM stress and the possible mechanism of interaction between NPs and HM in the agricultural system. Additionally, this review article will be supportive for the understanding of phytoremediation and micro-remediation of contaminated soils and also highlights the future research needs for the combined application of NPs in the soil for sustainable agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA