Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; 20(1): 4-14, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594406

RESUMEN

Macroautophagy/autophagy, is widely recognized for its crucial role in enabling cell survival and maintaining cellular energy homeostasis during starvation or energy stress. Its regulation is intricately linked to cellular energy status. In this review, covering yeast, mammals, and plants, we aim to provide a comprehensive overview of the understanding of the roles and mechanisms of carbon- or glucose-deprivation related autophagy, showing how cells effectively respond to such challenges for survival. Further investigation is needed to determine the specific degraded substrates by autophagy during glucose or energy deprivation and the diverse roles and mechanisms during varying durations of energy starvation.Abbreviations: ADP: adenosine diphosphate; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP: adenosine triphosphate; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD: glucose deprivation; GFP: green fluorescent protein; GTPases: guanosine triphosphatases; HK2: hexokinase 2; K phaffii: Komagataella phaffii; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein1 light chain 3; MAPK: mitogen-activated protein kinase; Mec1: mitosis entry checkpoint 1; MTOR: mechanistic target of rapamycin kinase; NAD (+): nicotinamide adenine dinucleotide; OGD: oxygen and glucose deprivation; PAS: phagophore assembly site; PCD: programmed cell death; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; S. cerevisiae: Saccharomyces cerevisiae; SIRT1: sirtuin 1; Snf1: sucrose non-fermenting 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TORC1: target of rapamycin complex 1; ULK1: unc-51 like kinase 1; Vps27: vacuolar protein sorting 27; Vps4: vacuolar protein sorting 4.


Asunto(s)
Autofagia , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metabolismo Energético , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa , Mamíferos/metabolismo
2.
Small Methods ; 5(6): e2100024, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34927909

RESUMEN

Mn and N codoped carbon materials are proposed as one of the most promising catalysts for the oxygen reduction reaction (ORR) but still confront a lot of challenges to replace Pt. Herein, a novel gas-phase migration strategy is developed for the scale synthesis of atomically dispersed Mn and N codoped carbon materials (g-SA-Mn) as highly effective ORR catalysts. Porous zeolitic imidazolate frameworks serve as the appropriate support for the trapping and anchoring of Mn-containing gaseous species and the synchronous high-temperature pyrolysis process results in the generation of atomically dispersed Mn-Nx active sites. Compared to the traditional liquid phase synthesis method, this unique strategy significantly increases the Mn loading and enables homogeneous dispersion of Mn atoms to promote the exposure of Mn-Nx active sites. The developed g-SA-Mn-900 catalyst exhibits excellent ORR performance in the alkaline media, including a high half-wave potential (0.90 V vs reversible hydrogen electrode), satisfactory durability, and good catalytic selectivity. In the practical application, the Zn-air battery assembled with g-SA-Mn-900 catalysts shows high power density and prominent durability during the discharge process, outperforming the commercial Pt/C benchmark. Such a gas-phase synthetic methodology offers an appealing and instructive guide for the logical synthesis of atomically dispersed catalysts.

3.
ACS Appl Mater Interfaces ; 13(44): 52542-52548, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714627

RESUMEN

Heterostructures show great potential in energy storage due to their multipurpose structures and function. Recently, two-dimensional (2D) graphene has been widely regarded as an excellent substrate for active materials due to its large specific surface area and superior electrical conductivity. However, it is prone to self-aggregation during charging and discharging, which limits its electrochemical performance. To address the graphene agglomeration problem, we interspersed polypyrrole carbon nanotubes between the graphene cavities and designed three-dimensional (3D)-heterostructures of ZnMn2O4@rGO-polypyrrole carbon nanotubes (ZMO@G-PNTs), which demonstrated a high rate and cyclic stability in lithium-ion capacitors (LICs). Furthermore, the 3D porous structure provided more surface capacity contribution than 2D graphene, ultimately resulting in a better stability (333 mAh g-1 after 1000 cycles at 1 A g-1) and high rate capacity (208 mAh g-1 at 5 A g-1). Also, the mechanism of performance difference between ZMO@G-PNTs and ZMO@G was investigated in detail. Moreover, LICs built from ZMO@G-PNTs as an anode and activated carbon as a cathode showed an energy density of 149.3 Wh kg-1 and a power density of 15 kW kg-1 and cycling stability with a capacity retention of 61.5% after 9000 cycles.

4.
ACS Appl Mater Interfaces ; 12(49): 54773-54781, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33226768

RESUMEN

Potassium-ion capacitors (KICs) have received a surge of interest because of their higher reserves and lower costs of potassium than lithium. However, the cycle performance and capacity of potassium devices have been reported to be unsatisfactory. Herein, a unique crystalline MnCo2O4.5 and amorphous MnCo2S4 core/shell nanoscale flower structure grown on graphene (MCO@MCS@rGO) was synthesized by a two-step hydrothermal process and demonstrated in KICs. The MCO@MCS@rGO exhibits improved electrical conductivity and excellent structural integrity during the charging and discharging process. The reasons could be attributed to the cavity structure of MCO, the mechanical buffer and high electrolyte diffusion rate of MCS, and the auxiliary effect of graphene. The electrical conductivity of MCO@MCS shows a specific capacity of 272.3 mA h g-1 after 400 cycles at 1 A g-1 and a capacity of 125.6 mA h g-1 at 2 A g-1. Besides, the MCO@MCS@rGO and high-surface-area activated carbon in KICs exhibit a relative energy density of 85.3 W h kg-1 and a power density of 9000 W kg-1 and outstanding cycling stability with a capacity retention of 76.6% after 5000 cycles. Moreover, the reaction mechanism of MCO@MCS@rGO in the K-ion cell was investigated systematically using X-ray diffraction and transmission electron microscopy, providing guidance on the further development of pseudocapacitive materials.

5.
Nanoscale ; 12(42): 21534-21559, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112936

RESUMEN

The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.

6.
Mol Cell Biochem ; 471(1-2): 177-188, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32556917

RESUMEN

Long non-coding RNA (lncRNA) Ewing sarcoma associated transcript 1 (EWSAT1) is an oncogene in a variety of tumors. Here, we planned to demonstrate EWSAT1 function in cervical cancer and further illustrate its underlying mechanism. EWSAT1 expression in cervical cancer was evaluated through qRT-PCR. Colony forming capacity was measured by colony formation assay and cell proliferation ability was measured by CCK-8 kit. Wound healing experiment was applied to test the cell migration and transwell assay was applied to test the invasion ability. Luciferase assay was employed to demonstrate EWSAT1 and miR-330-5p interaction. In cervical cancer, the expression of EWSAT1 was enhanced and contributed to the poor prognosis. Downregulated EWSAT1 expression inhibited Hela cell migration, proliferation, and invasion. EWSAT1 targeted to miR-330-5p and upregulated cytoplasmic polyadenylation element-binding protein 4 (CPEB4) expression by sponging miR-330-5p. Our study revealed that EWSAT1 enhances CPEB4 expression through sponging miR-330-5p, thereby promoting cervical cancer development, which might provide potential therapeutic targets for clinically cervical cancer patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias del Cuello Uterino/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Pronóstico , Proteínas de Unión al ARN/genética , Tasa de Supervivencia , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
7.
Nanoscale ; 12(2): 973-982, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840721

RESUMEN

Non-noble metal materials are regarded as the most promising catalysts for the oxygen reduction reaction (ORR) to overcome the inherent defects of Pt-based catalysts, like high cost, limited availability and insufficient stability. Here, we fabricate sandwich-like Co encapsulated nitrogen doped carbon polyhedron/graphene (s-Co@NCP/rGO) via a facile and scalable strategy by loading Co-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) layers individually on a polyurethane (PU) sponge template. The 3D sandwich structure is maintained with the assistance of the sponge template, which promotes the uniform dispersion of ZIF-67-derived Co embedded nitrogen doped carbon polyhedra (Co@NCP) and prevents the graphene plates from agglomerating during the annealing process. The final product demonstrates considerable catalytic performance for the ORR with a half-wave potential of 0.85 V, preferable stability and increased poisoning tolerance by comparison to 20 wt% Pt/C, which stems from the 3D sandwich-like structure, N/Co-doping effect, large accessible surface area and hierarchical porous structures. The excellent ORR performance of the catalysts means that they can be utilised in a Zn-air battery as cathode catalysts. During such a demonstration, s-Co@NCP/rGO shows a high open-circuit voltage of 1.466 V, remarkable long-term durability and an outstanding peak power density of 186 mV cm-2, which shows its high potential as a prospective alternative for widespread practical application in the field of non-noble metal ORR catalysts.

8.
J Agric Food Chem ; 67(43): 11877-11882, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31597038

RESUMEN

The investigation of the metabolites from different cocultures of Nigrospora oryzae and Irpex lacteus in solid medium revealed two new squalenes (1 and 2); one new azaphilone (3); two new tremulane sesquiterpenes (4 and 5); and three known compounds, conocenol B (6), conocenol C (7), and 4-(4-dihydroxymethylphenoxy)benzaldehyde (8). The antagonistic relationship was examined by studying metabolite production. The production of compounds 6 and 8 by I. lacteus after the induction of coculture indicated significant selectivity for antifungal activity against phytopathogenic N. oryzae, with MICs of 16 µg/mL; compounds 6 and 8 also exhibited antifungal activities in vivo against Cerasus cerasoides infected by N. oryzae at concentrations of 100 µg/mL. New compounds 2 and 4 showed antifungal activities against Colletotrichum gloeosporioides, with MICs of 8 µg/mL, and compound 4 showed antifungal activity against Didymella glomerata with an MIC of 1 µg/mL. These results indicate that the mutually antagonistic relationship in the coculture of the phytopathogen and the endophyte can result in antibiotics that inhibit the phytopathogen and downregulate the production of phytotoxins by phytopathogenic N. oryzae. New compound 5 from I. lacteus showed weak activity against acetylcholinesterase (AChE), with an inhibition ratio of 16% at a concentration of 50 µM.


Asunto(s)
Antifúngicos/metabolismo , Ascomicetos/efectos de los fármacos , Fungicidas Industriales/metabolismo , Polyporales/metabolismo , Escualeno/metabolismo , Antifúngicos/química , Antifúngicos/farmacología , Ascomicetos/crecimiento & desarrollo , Técnicas de Cocultivo , Colletotrichum/efectos de los fármacos , Colletotrichum/crecimiento & desarrollo , Fermentación , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Polyporales/química , Polyporales/crecimiento & desarrollo , Prunus/microbiología , Escualeno/química , Escualeno/farmacología
9.
Nat Prod Res ; 33(10): 1431-1435, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29272956

RESUMEN

Five new benzopyran derivatives (2-6) and a new natural product (1) were isolated from endophytic Daldinia eschscholzii in Dendrobium chrysotoxum and determined as (R)-2,3-dihydro-2,5-dihydroxy-2-methylchromen-4-one (1), (2R, 4S)-2,3-dihydro-2-methyl-benzopyran-4,5-diol (2), (R)-3-methoxyl-1-(2,6-dihydroxy phenyl)-butan-1-one (3), 7-O-α-d-ribosyl-5-hydroxy-2-methyl-4H-chromen-4-one (4), 7-O-α-d-ribosyl-2,3-dihydro-5-hydroxy-2-methyl-chromen-4-one (5), daldinium A (6). These compounds were evaluated for their antimicrobial activity, anti-acetylcholinesterase, nitric oxide inhibition, anticoagulant, photodynamic antimicrobial activities and glucose uptake of adipocytes. Some compounds showed photoactive antimicrobial activities and glucose uptake stimulating activities.


Asunto(s)
Antiinfecciosos/farmacología , Benzopiranos/aislamiento & purificación , Benzopiranos/farmacología , Dendrobium/química , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular
10.
Fitoterapia ; 130: 26-30, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30076888

RESUMEN

Five new metabolites belonging to two backbones of pulvilloric acid-type azaphilone and tremulane sesquiterpene were obtained and their structures were determined by spectral analysis. Based on the biogenesis analysis, tremulane sesquiterpenes were obtained from Irpex lacteus by the stimulation of mixed-culture. The antifungal selectivities of metabolites produced by fungus against their co-culture fungus and common pathogens, exhibited competitive interaction of this mix-culture. The tremulane sesquiterpene conocenol B produced by I. lacteus through the induction of Nigrospora oryzae showed selectivity of anti-fungal activity against its co-culture fungus, N. oryzae, with MICs at 16 µg/mL and 128 µg/mL against I. lacteus. The fungus can metabolize these new compounds to inhibit the growth of co-culture fungus while not inhibiting its own growth. Compound 5 was active against acetylcholinesterase (AChE) with a ratio of 35% at the concentration of 50 µM.


Asunto(s)
Ascomicetos/química , Benzopiranos/aislamiento & purificación , Pigmentos Biológicos/aislamiento & purificación , Polyporales/química , Sesquiterpenos/aislamiento & purificación , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Inhibidores de la Colinesterasa/aislamiento & purificación , Técnicas de Cocultivo , Fungicidas Industriales/aislamiento & purificación , Estructura Molecular , Polyporales/efectos de los fármacos , Polyporales/crecimiento & desarrollo
11.
Chem Asian J ; 13(20): 3057-3062, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30133158

RESUMEN

The oxygen reduction reaction (ORR) in a cathode is an essential component of many electrochemical energy storage and conversion systems. Two-dimensional materials are beneficial for electron conduction and mass transport with high density, showing prominent electrochemical catalytic performance towards the ORR. Herein, a simple NaCl-assisted method to synthesize cobalt-nitrogen-doped carbon materials (CoNC), which present prominent performance towards the ORR in alkaline media, is described. The utilization of the NaCl template endows the product with a large specific surface area of 556.4 m2 g-1 , as well as good dispersion of cobalt nanoparticles. CoNC-800@NaCl (800 indicates the calcination temperature in °C) displays an excellent onset potential of 0.94 V (vs. a reversible hydrogen electrode), which is close to that of commercial Pt/C. Additionally, CoNC-800@NaCl also exhibits better long-term durability and methanol tolerance than that of Pt/C. The high-performance CoNC-800@NaCl catalyst provides a hopeful alternative to noble-metal catalysts for the ORR in practical applications.

12.
Molecules ; 23(7)2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037113

RESUMEN

In this study, the co-culture of Nigrospora oryzae and Beauveria bassiana, the endophytes in the seeds of Dendrobium officinale, were examined for metabolite diversity. Five new azaphilones were isolated, and their structures were determined by spectral analysis. In terms of azaphilones, compound 2 had an unprecedented skeleton, with a bicyclic oxygen bridge. The antifungal selectivities of the metabolite produced by N. oryzae against its co-culture fungus, B. bassiana, and common pathogens exhibited competitive interaction in this mix-culture. Compounds 1 and 2 showed obvious nitric oxide (NO) inhibitory activity with ratios of 37%, and 39%, respectively, at a concentration of 50 µM.


Asunto(s)
Ascomicetos/metabolismo , Pigmentos Biológicos/biosíntesis , Antibiosis , Antifúngicos/metabolismo , Antifúngicos/farmacología , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Técnicas de Cocultivo , Endófitos/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación
13.
Nat Prod Res ; 32(9): 1050-1055, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28927295

RESUMEN

Two new oxidation products-related aureonitol and cytochalasan were isolated from Chaetomium globosum fermented in Chinese yam (Dioscorea opposita) and determined as 10,11-dihydroxyl- aureonitol (1) and yamchaetoglobosin A (2). Compound 2 indicated significant inhibitory effect on nitric oxide production in LPS-activated macrophages, anti-acetylcholinesterase activity with the inhibition ratios of 92.5, 38.2% at 50 µM, and cytotoxicity to HL-60, A-549, SMMC-7721, MCF-7 and SW480 with the range of inhibition ratio at 51-96% for a concentration of 40 µM. Compounds 1, 2 showed weak anticoagulant activity with PT at 16.8 s. Few work was reported on the anti-acetylcholinesterase, and anticoagulant activities of aureonitol, and cytochalasan derivatives. The preliminary structure-activity relationship stated that the oxidation ring-opening in yamchaetoglobosin A can retain the inhibitory effect against NO production and tumor cell.


Asunto(s)
Anticoagulantes/farmacología , Antineoplásicos/farmacología , Chaetomium/química , Inhibidores de la Colinesterasa/farmacología , Endófitos/química , Células A549 , Anticoagulantes/química , Antineoplásicos/química , Chaetomium/metabolismo , Inhibidores de la Colinesterasa/química , Dioscorea/microbiología , Evaluación Preclínica de Medicamentos/métodos , Furanos/metabolismo , Células HL-60 , Humanos , Células MCF-7 , Estructura Molecular , Óxido Nítrico/metabolismo , Relación Estructura-Actividad
14.
Chirality ; 29(7): 348-357, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28421627

RESUMEN

Imazethapyr (IM) is a chiral herbicide composed of an (-)-R-enantiomer and an (+)-S-enantiomer with differential herbicidal activity. In this study, the effects of microbial organisms, humidity, and temperature on the selective degradation of the (-)-R- and (+)-S-enantiomers of IM were determined in silty loam (SL) and clay loam (CL) soil with different pH values. The (-)-R-enantiomer of IM was preferentially degraded in two soils under different microorganism, humidity, and temperature conditions. The average half-lives of R-IM ranged from 43 to 66.1 days and were significantly shorter (P < 0.05) than those of S-IM, which ranged from 51.4 to 79.8 days. The enantiomer fraction (EF = (+)-S-enantiomer/((-)-R-enantiomer + (+)-S-enantiomer)) values were used to describe the enantioselectivity of degradation of IM were >0.5 (P < 0.05) in two unsterilized soils under different humidity and temperature conditions. The highest EF values were observed at unsterilized CL soil samples under 50% maximum water-holding capacity (MWHC) and 25 °C environmental conditions. The EF values of the IM enantiomers were significantly higher (P < 0.05) in CL soils (higher pH = 5.81) and were 0.581 (unsterilized) and 0.575 (50% MWHC; 25 °C) compared with those recorded in SL soil (lower pH = 4.85). In addition, this study revealed that microbial organisms preferentially utilized the more herbicidal active IM enantiomer.

15.
Plant Cell Environ ; 34(8): 1304-17, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21477123

RESUMEN

Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Dióxido de Carbono/farmacología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Glicolatos/farmacología , Proteínas de Homeodominio/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Ácidos Naftalenoacéticos/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ftalimidas/farmacología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Transducción de Señal , Factores de Transcripción
16.
J Agric Food Chem ; 58(7): 4202-6, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20218719

RESUMEN

Chiral compounds usually behave enantioselectively in phyto-biochemical processes. Imidazolinones are a class of chiral herbicides that are widely used. They inhibit branched-chain amino acid biosynthesis in plants by targeting acetolactate synthase (ALS). It has been reported that the imidazolinone enantiomers show different inhibiting activities to maize (Zea mays L.) seedlings and ALS. However, to date, the mechanism of enantioselective inhibition of imazethapyr (IM) on ALS activity has not been well studied. In this study, pure enantiomers of IM were used for characterizing their differences in activity to ALS. Computational molecular docking was performed to discover the molecular interaction between IM enantiomers and ALS at the first time. Results showed that the IM enantiomers enantioselectively suppressed the in vitro and in vivo ALS activity of maize leaves. R-(-)-IM was more active than S-(+)-IM. The in vivo ALS activity study showed only a 2-fold difference between R-(-)-IM and S-(+)-IM. Quite different from the in vivo study, the in vitro study showed that the difference in inhibition between the enantiomers fell sharply as concentration increased. At the lowest concentration of 40 microg L(-1), R-(-)-IM appeared 25 times more active than S-(+)-IM, but only 7 times at 200 microg L(-1). At the highest concentration of 25 mg L(-1), in vitro ALS activity was almost completely inhibited by S-(+)-, R-(-)-IM and (+/-)-IM, there was only 1.1 times differences between S-(+)- and R-(-)-IM. Molecular modeling results provide the rational structural basis to understand the mechanism of enantioselective inhibition of IM on ALS activity.


Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Ácidos Nicotínicos/química , Proteínas de Plantas/antagonistas & inhibidores , Zea mays/enzimología , Acetolactato Sintasa/química , Regulación hacia Abajo , Herbicidas/química , Conformación Molecular , Proteínas de Plantas/química , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad , Zea mays/química
17.
J Agric Food Chem ; 57(4): 1624-31, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19199589

RESUMEN

Chiral compounds usually behave enantioselectively in phyto-biochemical processes. With the increasing application of chiral herbicides, their enantioselective phytotoxicity to plants merits further study, and little information is available in this area. The purpose of this study was to examine the enantioselective phytotoxicity of the herbicide imazethapyr (IM) on the roots of maize (Zea mays L.) seedlings. Enantiomers of IM were separated by HPLC, and their absolute configurations were confirmed as S-(+)-IM and R-(-)-IM by the octant rule. Plant growth measurements and morphological, microscopic, and ultrastructural observations were conducted after treatment with individual IM enantiomers and the racemate. Observations of root morphology showed that the root diameter significantly increased, whereas the root volume, surface area, and number of root tips decreased significantly. IM enantiomers selectively damaged root hair growth and significantly reduced the sloughing of border cells from the tips. IM also had adverse effects on cell organelles, such as statocytes, mitochondria, dictyosomes, and endoplasmic reticulum in maize roots. Moreover, cell membranes and cell walls were thicker than usual after IM treatment. All of the results showed the same trend that the R-(-)-IM affected the root growth of maize seedlings more severely than the S-(+)-IM. The inhibition abilities of (+/-)-IM was between S-(+)- and R-(-)-IM. The behavior of the active enantiomer, instead of just the racemate, may have more relevance to the herbicidal effects and ecological safety of IM. Therefore, enantiomeric differences should be considered when evaluating the bioavailability of the herbicide IM.


Asunto(s)
Herbicidas/química , Herbicidas/farmacología , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/ultraestructura , Estereoisomerismo , Relación Estructura-Actividad , Zea mays/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...