Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105721, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311175

RESUMEN

Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.


Asunto(s)
Carcinoma Hepatocelular , Histonas , Neoplasias Hepáticas , Tirosina , Humanos , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Tirosina/metabolismo
2.
Cancer Lett ; 585: 216667, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38280479

RESUMEN

The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP , Histonas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Adenosina Trifosfatasas/metabolismo
4.
Research (Wash D C) ; 6: 0109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040526

RESUMEN

Emerging discoveries about undocumented acyltransferase activities of known histone acetyltransferases (HATs) advance our understandings in the regulation of histone modifications. However, the molecular basis of HATs selecting acyl coenzyme A (acyl-CoA) substrates for histone modification is less known. We here report that lysine acetyltransferase 2A (KAT2A) as an illustrative instance of HATs can selectively utilize acetyl-CoA, propionyl-CoA, butyryl-CoA, and succinyl-CoA to directly deposit 18 histone acylation hallmarks in nucleosome. By analyzing the co-crystal structures of the catalytic domain of KAT2A in complex with acetyl-CoA, propionyl-CoA, butyryl-CoA, malonyl-CoA, succinyl-CoA, and glutaryl-CoA, we conclude that the alternative substrate-binding pocket of KAT2A and the length and electrostatic features of the acyl chain cooperatively determine the selection of the acyl-CoA substrates by KAT2A. This study reveals the molecular basis underlying the pluripotency of HATs that selectively install acylation hallmarks in nucleosomes, which might serve as instrumental mechanism to precisely regulate histone acylation profiles in cells.

5.
Front Genet ; 14: 1141411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007966

RESUMEN

Introduction: Muscle glycolytic potential (GP) is a key factor affecting multiple meat quality traits. It is calculated based on the contents of residual glycogen and glucose (RG), glucose-6-phosphate (G6P), and lactate (LAT) contents in muscle. However, the genetic mechanism of glycolytic metabolism in skeletal muscle of pigs remains poorly understood. With a history of more than 400 years and some unique characteristics, the Erhualian pig is called the "giant panda" (very precious) in the world's pig species by Chinese animal husbandry. Methods: Here, we performed a genome-wide association study (GWAS) using 1.4M single nucleotide polymorphisms (SNPs) chips for longissimus RG, G6P, LAT, and GP levels in 301 purebred Erhualian pigs. Results: We found that the average GP value of Erhualian was unusually low (68.09 µmol/g), but the variation was large (10.4-112.7 µmol/g). The SNP-based heritability estimates for the four traits ranged from 0.16-0.32. In total, our GWAS revealed 31 quantitative trait loci (QTLs), including eight for RG, nine for G6P, nine for LAT, five for GP. Of these loci, eight were genome-wide significant (p < 3.8 × 10-7), and six loci were common to two or three traits. Multiple promising candidate genes such as FTO, MINPP1, RIPOR2, SCL8A3, LIFR and SRGAP1 were identified. The genotype combinations of the five GP-associated SNPs also showed significant effect on other meat quality traits. Discussion: These results not only provide insights into the genetic architecture of GP related traits in Erhualian, but also are useful for pig breeding programs involving this breed.

6.
Nat Chem Biol ; 19(7): 855-864, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36805701

RESUMEN

Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.


Asunto(s)
Histonas , Tirosina , Animales , Histonas/metabolismo , Tirosina/genética , Cromatina , Proteínas Nucleares/metabolismo , Transcripción Genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA