Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Rep ; 14(1): 14994, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951207

RESUMEN

Artificially extracted agricultural phenotype information exhibits high subjectivity and low accuracy, while the utilization of image extraction information is susceptible to interference from haze. Furthermore, the effectiveness of the agricultural image dehazing method used for extracting such information is limited due to unclear texture details and color representation in the images. To address these limitations, we propose AgriGAN (unpaired image dehazing via a cycle-consistent generative adversarial network) for enhancing the dehazing performance in agricultural plant phenotyping. The algorithm incorporates an atmospheric scattering model to improve the discriminator model and employs a whole-detail consistent discrimination approach to enhance discriminator efficiency, thereby accelerating convergence towards Nash equilibrium state within the adversarial network. Finally, by training with network adversarial loss + cycle consistent loss, clear images are obtained after dehazing process. Experimental evaluations and comparative analysis were conducted to assess this algorithm's performance, demonstrating improved accuracy in dehazing agricultural images while preserving detailed texture information and mitigating color deviation issues.

2.
J Ethnopharmacol ; 334: 118581, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019415

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The plants in the genus Erigeron are known to exhibit antiviral activities, including those against the respiratory syncytial virus (RSV). In traditional medicine Erigeron annuus (L.) Pers (EA) has been used in the treatment of pulmonary diseases and acute infectious hepatitis. AIM OF THIS STUDY: The aim of this study is to determine the optimum extraction method to produce the most potent anti-RSV extract, elucidate its mode and mechanisms of antiviral activity in both in vitro and in vivo models, and identify the chemical structures of the bioactive compounds. MATERIALS AND METHODS: The whole plant of EA was extracted with ethyl acetate, methanol, ethanol, water, aqueous methanol (60, 80% and 100%) and aqueous ethanol (50, 75% and 95%) using maceration, reflux, and ultrasound-assisted extraction methods. The antiviral activities of the extracts were determined in vitro. The in vitro antiviral activities of the extracts were determined using Hep-2 cells. Four in vitro experiments were performed to determine the mode of antiviral activity of the most active extract, ethyl acetate fraction (EAE) of Erigeron annuus whole plant extract prepared by refluxing with 50% ethanol, by examining its ability to inactivate the virus directly, inhibit viral adsorption and penetration, inhibit viral replication and preventive effect. The effect of temperature and duration of treatment on these modes of action was also determined. The antiviral activity of the EAE was also assessed in vivo in a mouse model. The lung index, viral load, and lung tissue histology were measured. qRT-PCR and ELISA studies were performed to determine the expression of key genes (TLR-3 and TLR-4) and proteins (IL-2, IFN-γ, and TNF-α) related to RSV infection. The most active antiviral compound was isolated using chromatography techniques, and its chemical structure was identified through electrospray triple quadrupole mass spectroscopy and nuclear magnetic resonance spectroscopy. RESULTS: The EAE was the most active on RSV. In vitro experiments showed that the antiviral activity of EAE is via direct inactivation, inhibition of entry, and inhibition of the proliferation of the virus. In vivo experiments showed that the EAE effectively inhibited the proliferation of RSV in the lungs and alleviated the lung tissue lesions in RSV-infected mice. The antiviral activity of the EAE is mediated by downregulating the expression of TLR3 and TLR4 in the lung, upregulating the expression of IL-2 and IFN-γ, and downregulating the expression of TNF-α. Apigenin 7-O-methylglucuronide was found to be a major bioactive compound in EAE. CONCLUSIONS: The results of this study confirmed the antiviral activity of EA by inactivating, inhibiting the entry, and inhibiting the proliferation of RSV. The activity is mediated by regulating the immunity and inflammatory mediators. Apigenin 7-O-methylglucuronide is the bioactive compound present in EA.

3.
Opt Lett ; 49(13): 3765-3768, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950262

RESUMEN

AlGaInP-based red light emitting diodes (LEDs) are considered as promising light sources in future full-color displays. At present, vertical chip configuration is still the mainstream device structure of AlGaInP-based red LEDs. However, current crowding around p-electrode severely hinders an efficient improvement. Here, we propose a Schottky-contact current blocking layer (SCBL) to enhance current spreading and to improve light extraction efficiency of AlGaInP-based red vertical miniaturized LEDs (mini-LEDs). By utilizing the Schottky contact between ITO and p-GaP, the SCBL can hinder current crowding around the p-electrode. The current is forced to inject into an active region through a p-GaP+ ohmic contact layer, avoiding light absorption by p-electrode. Through the transfer length method, the Schottky contact characteristics between the ITO and p-GaP as well as the ohmic contact characteristics between ITO and p-GaP+ are demonstrated. Benefiting from superior current spreading and improved light extraction, a mini-LED with SCBL realizes an enhancement of 31.8% in external quantum efficiency (EQE) at 20 mA in comparison with a mini-LED without SCBL.

4.
Opt Lett ; 49(11): 2877, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824281

RESUMEN

We present an erratum to our Letter [Opt. Lett.49, 2049 (2024)10.1364/OL.522212]. There is a careless omission of some references because our Letter is longer than the maximum allowed four pages. The missing references and their specific quote location are listed in the following. These corrections do not affect the data plotted in figures, discussion, or conclusion of the original Letter.

5.
Clin Neurol Neurosurg ; 243: 108398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908320

RESUMEN

OBJECTIVE: High-resolution magnetic resonance imaging (HR-MRI) can provide valuable insights into the evaluation of vascular pathological conditions, and 3D digital subtraction angiography (3D-DSA) offers clear visualization of the vascular morphology and hemodynamics. This study aimed to investigate the potential of a multimodal method to treat unruptured vertebral artery dissection aneurysms (u-VADAs) by fusing image data from HR-MRI and 3D-DSA. METHODS: This observational study enrolled 5 patients diagnosed with u-VADAs, who were scheduled for interventional treatment. The image data of HR-MRI and 3D-DSA were merged by geometry software, resulting in a multimodal model. Quantified values of aneurysm wall enhancement (AWE), wall shear stress (WSS), neck velocity, inflow volume, intra-stent flow velocity (ISvelocity), and intra-aneurysmal velocity (IAvelocity) were calculated from the multimodal method. RESULTS: We found the actual lengths of u-VADAs in the multimodal model were longer than the 3D-DSA model. We formulated surgical plannings based on the WSS, IA velocity, and neck velocity. The post-operative value of IAvelocity, neck velocity, and follow-up quantified values of AWE were decreased compared with the pre-operative condition. After that, u-VADAs were complete occlusion in four patients and near-complete occlusion in one patient during the 6th-month follow-up after surgery. CONCLUSION: The multidimensional method combining HR-MRI with 3D-DSA may provide more valuable information for treating VADAs, with the potential to develop effective surgical planning.


Asunto(s)
Angiografía de Substracción Digital , Hemodinámica , Imagenología Tridimensional , Disección de la Arteria Vertebral , Humanos , Masculino , Disección de la Arteria Vertebral/diagnóstico por imagen , Disección de la Arteria Vertebral/cirugía , Disección de la Arteria Vertebral/fisiopatología , Persona de Mediana Edad , Hemodinámica/fisiología , Femenino , Imagenología Tridimensional/métodos , Angiografía de Substracción Digital/métodos , Adulto , Imagen por Resonancia Magnética/métodos , Anciano , Cuidados Preoperatorios/métodos , Arteria Vertebral/diagnóstico por imagen , Arteria Vertebral/cirugía , Arteria Vertebral/fisiopatología , Aneurisma Intracraneal/cirugía , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/fisiopatología
6.
Sci Bull (Beijing) ; 69(13): 2080-2088, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670852

RESUMEN

III-nitride materials are of great importance in the development of modern optoelectronics, but they have been limited over years by low light utilization rate and high dislocation densities in heteroepitaxial films grown on foreign substrate with limited refractive index contrast and large lattice mismatches. Here, we demonstrate a paradigm of high-throughput manufacturing bioinspired microstructures on warped substrates by flexible nanoimprint lithography for promoting the light extraction capability. We design a flexible nanoimprinting mold of copolymer and a two-step etching process that enable high-efficiency fabrication of nanoimprinted compound-eye-like Al2O3 microstructure (NCAM) and nanoimprinted compound-eye-like SiO2 microstructure (NCSM) template, achieving a 6.4-fold increase in throughput and 25% savings in economic costs over stepper projection lithography. Compared to NCAM template, we find that the NCSM template can not only improve the light extraction capability, but also modulate the morphology of AlN nucleation layer and reduce the formation of misoriented GaN grains on the inclined sidewall of microstructures, which suppresses the dislocations generated during coalescence, resulting in 40% reduction in dislocation density. This study provides a low-cost, high-quality, and high-throughput solution for manufacturing microstructures on warped surfaces of III-nitride optoelectronic devices.

7.
Opt Lett ; 49(8): 2049-2052, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621073

RESUMEN

Here, we propose a sandwich-like Si-doping scheme (undoped/Si-doped/undoped) in Al0.6Ga0.4N quantum barriers (QBs) to simultaneously promote the optoelectronic performances and reliability of deep ultraviolet light-emitting diodes (DUV-LEDs). Through experimental and numerical analyses, in the case of DUV-LEDs with conventional uniform Si-doping QB structure, severe operation-induced reliability degradation, including the increase of reverse leakage current (IR) and reduction of light output power (LOP), will offset the enhancement of optoelectronic performances as the Si-doping levels increase to an extent, which hinders further development of DUV-LEDs. According to a transmission electron microscope characterization and a numerical simulation, an improved interfacial quality in multiple quantum wells (MQWs) and more uniform carrier distribution within MQWs are demonstrated for our proposed Si-doping structure in comparison to the uniform Si-doping structure. Consequently, the proposed DUV-LED shows superior wall-plug efficiency (4%), IR at -6 V reduced by almost one order of magnitude, and slower LOP degradation after 168-h 100 mA-current-stress operation. This feasible doping scheme provides a promising strategy for the high-efficiency and cost-competitive DUV-LEDs.

8.
Opt Lett ; 49(6): 1449-1452, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489422

RESUMEN

AlGaInP-based light-emitting diodes (LEDs) suffer from a low external quantum efficiency (EQE), which is mainly restrained by the poor light extraction efficiency. Here, we demonstrate AlGaInP-based vertical miniaturized-LEDs (mini-LEDs) with a porous n-AlGaInP surface using a wet etching process to boost light extraction. We investigated the effects of etching time on the surface morphology of the porous n-AlGaInP surface. We found that as the etching time is prolonged, the density of pores increases initially and decreases subsequently. In comparison with the vertical mini-LED with a smooth n-AlGaInP surface, the vertical mini-LEDs with the porous n-AlGaInP surface reveal improvement in light output power and EQE, meanwhile, without the deterioration of electrical performance. The highest improvement of 38.9% in EQE measured at 20 mA is observed from the vertical mini-LED with the maximum density of the pores. Utilizing a three-dimensional finite-difference time-domain method, we reveal the underlying mechanisms of improved performance, which are associated with suppressed total internal reflection and efficient light scattering effect of the pores.

9.
ACS Appl Mater Interfaces ; 16(5): 6605-6613, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266191

RESUMEN

Throughout the development of III-nitride electronic and optoelectronic devices, electrically interfacing III-nitride semiconductors and metal schemes has been a long-standing issue that determines the contact resistance and operation voltage, which are tightly associated with the device performance and stability. Compared to the main research focus of the crystal quality of III-nitride semiconductors, the equally important contact interface between III-nitrides and metal schemes has received relatively less attention. Here, we demonstrate a comprehensive contact engineering strategy to realize low resistance to Al-rich n-AlGaN via pretreatment and metal scheme optimization. Prior to the metal deposition, the introduction of CHF3 treatment is conducive to the substantial resistance reduction, with the effect becoming more distinct by prolonging the treatment time. Furthermore, we compare different metal schemes, namely, Ti/Al/Ti/Au, Ti/Al/Ti/Pt/Au, and Cr/Ti/Al/Ti/Pt/Au, to form electrical contact on n-AlGaN. From microscale analysis based on multiple characterization methods, we reveal the correlation between electrical properties and the nature of the contact interface, attributing the contact improvement to the low-resistance Pt- and Cr-related alloy formation. Under the circumstance that no efforts have been devoted to optimizing the epitaxial growth, engineering the metal-semiconductor contact properties alone leads to a resistance value of 8.96 × 10-5 Ω·cm2. As a result, the fabricated deep-ultraviolet LEDs exhibit an ultralow forward voltage of 5.47 V at 30 A/cm2 and a 33% increase in the peak wall-plug efficiency.

10.
Technol Health Care ; 32(2): 831-840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37458055

RESUMEN

BACKGROUND: Femoral artery puncture is still the most used surgical approach. Because the operation requires local anaesthesia, the patient may not be able to exert full self-control, and their upper and lower limbs and trunk need to be constrained by a protection device. OBJECTIVE: To explore the safe application effect of a new type of anti-movement protection device for upper and lower extremities, shoulders and chest in patients undergoing interventional therapy via the femoral artery approach. METHODS: This is a prospective randomised controlled study. A total of 230 patients were randomly divided into two groups: the study group (n= 115) and the control group (n= 115). The time needed to implement the restraint operation and the loosening of the restraint device in the two groups was recorded, and the satisfaction of surgeons and nurses was investigated. RESULTS: The time needed to perform restraint operation in the study group was significantly less than that in the control group (4.06 ± 0.61 min vs. 7.01 ± 0.76 min, P< 0.05). The satisfaction of surgeons and nurses with the use of the new protective device was significantly better than that of the conventional restraint band (P< 0.05). CONCLUSION: The new anti-movement protection device for upper and lower limbs, shoulders and chest can conveniently and quickly achieve effective protection and braking of patients, ensure the safety of surgery and improve satisfaction.


Asunto(s)
Arteria Femoral , Equipos de Seguridad , Humanos , Arteria Femoral/cirugía , Estudios Prospectivos , Proyectos de Investigación , Extremidad Inferior , Resultado del Tratamiento
11.
CNS Neurosci Ther ; 30(1): e14510, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905592

RESUMEN

BACKGROUND: Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD: We systematically summarize the latest research on single-cell sequencing in AIS. RESULT: In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION: This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/terapia , Pronóstico , Inflamación/complicaciones
12.
Opt Lett ; 48(24): 6492-6495, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099781

RESUMEN

Here, we propose a monolithically integrated triple-wavelength InGaN-based LED structure and conduct comprehensive research on its emission dynamics under electrical and optical excitation. Through experimental and numerical analyses, a carrier transport and a recombination process can be manipulated in bandgap-engineered multiple quantum wells (MQWs), thus realizing the manipulation of emission properties. A rational triple-wavelength LED structure is heteroepitaxially grown, which shows excellent color stability versus injected currents. Furthermore, utilizing the temperature-dependent time-resolved photoluminescence (TRPL), triple-wavelength peaks display different TRPL decay behaviors. Especially, an anomalous three-stage decay phenomenon is found for a low-energy peak measured at 10 K, accompanied by a decay profile transition with the increasing temperature. The underlying mechanisms are revealed and correlated with carrier localization, interaction between different QWs, and competition between radiative and nonradiative recombination.

13.
Front Neurol ; 14: 1241760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909032

RESUMEN

Background: Extracranial-intracranial (EC-IC) bypass surgery is the main treatment approach to moyamoya disease, and an accurate assessment of the patency of anastomosis is critical for successful surgery. So far, the most common way to do this is the intraoperative intravenous indocyanine green (ICG) video-angiography. Intra-arterial ICG-VA has been applied to treat peripheral cerebral aneurysms, spinal arteriovenous fistulas, and dural arteriovenous fistulas, but few reports have concerned the use of arterial injection of ICG to evaluate anastomotic patency. This research aims to explore the feasibility and effects of catheter-guided superficial temporal artery injection of ICG in the evaluation of anastomotic patency after bypass surgery. Methods: In this study, 20 patients with moyamoya disease or syndrome who underwent bypass surgery were divided into two groups, one who received intravenous ICG angiography and the other who received intra-arterial ICG angiography, to compare the two injection methods for vascular anastomosis patency. We conducted conventional intraoperative digital subtraction angiography (DSA) in a hybrid operating room during extracranial-intracranial (EC-IC) bypass surgery, including the additional step of injecting ICG into the main trunk of the superficial temporal artery (STA) through a catheter. Results: Intra-arterial injection of indocyanine green video-angiography (ICG-VA) indicated good patency of the vascular anastomosis when compared with conventional digital subtraction angiography (DSA) and intravenous ICG-VA, confirming the feasibility of using the arterial injection of ICG for assessing anastomotic patency. And intra-arterial ICG-VA results in faster visualization than intravenous ICG-VA (p < 0.05). Besides, ICG-VA through arterial injection provided valuable information on the vascular blood flow direction after the bypass surgery, and allowed for visual inspection of the range of cortical brain supply from the superficial temporal artery and venous return from the cortex. Moreover, arterial injection of ICG offered a rapid dye washout effect, reducing the repeat imaging time. Conclusion: This study indicates that intra-arterial ICG-VA has good effects in observing the direction of blood flow in blood vessels and the range of cortical brain supply from the STA, which reflects blood flow near the anastomosis and provides additional information that may allow the postoperative prediction of cerebral hyperperfusion syndrome. However, the procedure of intra-arterial ICG-VA is relatively complicated compared to intravenous ICG-VA.

14.
Fluids Barriers CNS ; 20(1): 81, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925414

RESUMEN

Cerebral vasospasm significantly contributes to poor prognosis and mortality in patients with aneurysmal subarachnoid hemorrhage. Current research indicates that the pathological and physiological mechanisms of cerebral vasospasm may be attributed to the exposure of blood vessels to toxic substances, such as oxyhaemoglobin and inflammation factors. These factors disrupt cerebral vascular homeostasis. Vascular homeostasis is maintained by the extracellular matrix (ECM) and related cell surface receptors, such as integrins, characterised by collagen deposition, collagen crosslinking, and elastin degradation within the vascular ECM. It involves interactions between the ECM and smooth muscle cells as well as endothelial cells. Its biological activities are particularly crucial in the context of cerebral vasospasm. Therefore, regulating ECM homeostasis may represent a novel therapeutic target for cerebral vasospasm. This review explores the potential pathogenic mechanisms of cerebral vasospasm and the impacts of ECM protein metabolism on the vascular wall during ECM remodelling. Additionally, we underscore the significance of an ECM protein imbalance, which can lead to increased ECM stiffness and activation of the YAP pathway, resulting in vascular remodelling. Lastly, we discuss future research directions.


Asunto(s)
Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/metabolismo , Vasoespasmo Intracraneal/patología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágeno
15.
Biomolecules ; 13(10)2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37892177

RESUMEN

We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.


Asunto(s)
Malformaciones Arteriovenosas , Niacina , Humanos , FN-kappa B/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Metilación de ADN
16.
Hum Genet ; 142(12): 1633-1649, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768356

RESUMEN

Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-ß were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.


Asunto(s)
Epigénesis Genética , Malformaciones Arteriovenosas Intracraneales , Humanos , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/metabolismo , Encéfalo/metabolismo , Transducción de Señal/genética , Inflamación/metabolismo , Variación Genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo
17.
Eur J Med Res ; 28(1): 297, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626424

RESUMEN

Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Factor A de Crecimiento Endotelial Vascular , Flavonoles , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias/tratamiento farmacológico
18.
Opt Lett ; 48(16): 4229-4232, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37581999

RESUMEN

Here, we propose a thermally stable and high-reflectivity Ni/Rh/Ni/Au p-type electrode for AlGaN-based deep-ultraviolet (DUV) flip-chip light-emitting diodes (FCLEDs). We discover that the reflectance of Ni/Au electrode deteriorated significantly after rapid thermal annealing. Experiments show that Ni and Au agglomerate at high temperatures, and more incident photons traverse the gaps between the agglomerates, leading to a decrease in reflectance of Ni/Au after annealing. In contrast, the proposed Ni/Rh/Ni/Au p-type electrode shows remarkable thermal stability as a result of the suppression of Ni agglomeration by the Rh layer at high temperatures. Besides, due to the higher reflectivity of the Ni/Rh/Ni/Au electrode and its lower specific contact resistivity formed with p-GaN, the external quantum efficiency and wall-plug efficiency of a DUV FCLED with Ni/Rh/Ni/Au electrode are increased by 13.94% and 17.30% in comparison with the one with Ni/Au electrode at an injection current of 100 mA. The Ni/Rh/Ni/Au electrode effectively solves the long-standing dilemma of efficiency degradation of DUV FCLEDs with a Ni/Au electrode after high-temperature annealing.

19.
Opt Lett ; 48(16): 4292-4295, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582015

RESUMEN

Here, we propose nanoimprinted patterned sapphire with a silica array (PSSA) with the aim to promote the efficiency of InGaN-based green (∼520 nm) mini-LEDs. According to x-ray diffraction measurements, the threading dislocation density of GaN epitaxial layers grown on nanoimprinted PSSA demonstrates a pronounced reduction compared with the epilayers on the conventional patterned sapphire substrate (PSS). Consequently, a mini-LED on PSSA exhibits a significantly boosted light output power (LOP) in comparison to a mini-LED on PSS. At 10 mA, the LOP of the mini-LED on PSS is 6.0 mW, and this is further improved to 6.8 mW for the mini-LED on PSSA. Moreover, the peak external quantum efficiencies of the mini-LEDs on PSS and PSSA are 41% and 47%, respectively. A three-dimensional (3D) finite-difference time-domain simulation demonstrates that the PSSA contributes enhanced light extraction for photons emitted from the active region. It is also highly feasible to use this nanoimprinted PSSA technology in red and blue mini-LEDs for the realization of full-color displays.

20.
Front Immunol ; 14: 1191826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266433

RESUMEN

Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Animales , Hemorragia Subaracnoidea/metabolismo , Ratas Sprague-Dawley , Lesiones Encefálicas/patología , Glutatión , Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...