Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(14): 39871-39882, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36600159

RESUMEN

Complexes formed by organic matter and clay minerals, which are active components of soil systems, play an important role in the migration and transformation of pollutants in nature. In this study, humic-acid-montmorillonite (HA-MT) and humic-acid-kaolin (HA-KL) complexes were prepared, and their structures before and after the adsorption of aniline were analyzed. The aniline adsorption-desorption characteristics of complexes with different clay minerals and varying HA contents were explored using the static adsorption-desorption equilibrium method. Compared with the pristine clay minerals, the flaky and porous structure of the complexes and the aromaticity were enhanced. The adsorption of aniline on the different clay mineral complexes was nonlinear, and the adsorption capacity increased with increasing HA content. Additionally, the adsorption capacity of HA-MT was higher than that of HA-KL. After adsorption, the specific surface area of the complexes decreased, the surfaces became more complicated, and the aromaticity decreased because aniline is primarily adsorption onto the complexes via aromatic rings. Aniline was adsorbed onto the complexes via spontaneous exothermic physical adsorption. The amount of aniline desorbed from the complexes increased with increasing HA content, and a lag in desorption was observed, with a greater lag for HA-KL than for HA-MT.


Asunto(s)
Minerales , Suelo , Arcilla , Adsorción , Minerales/química , Suelo/química , Caolín/química , Sustancias Húmicas/análisis , Bentonita/química
2.
Appl Biochem Biotechnol ; 194(9): 3833-3842, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35543855

RESUMEN

MicroRNAs are reported to be involved in tumor development. This study aims to investigate the biological functions and molecular mechanisms of microRNA-19a-3p in gastric cancer cells. TCGA-based expression analysis and qRT-PCR assay illustrated that microRNA-19a-3p was overexpressed in gastric cancer. MTT and Transwell assays indicated that microRNA-19a-3p could strengthen the proliferation, migration, and invasion of gastric cancer cells. SMOC2 was bioinformatically predicted as the target of microRNA-19a-3p, followed by identified using a dual-luciferase assay. The effects of microRNA-19a-3p/SMOC2 regulatory axis on gastric cancer cells were examined by MTT and Transwell assays as well. Concludingly, this study demonstrated that microRNA-19a-3p could promote the aggressive cell phenotypes of gastric cancer cells by targeting SMOC2.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
3.
J Biochem ; 171(4): 451-457, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35106560

RESUMEN

MicroRNA plays a crucial part in genesis and development of gastric cancer (GC). We uncovered that microRNA-30c-2-3p was down-regulated in GC tissue and cell lines. Suppression of microRNA-30c-2-3p promoted progression of GC cells in vitro. STRIP2 was confirmed as a target for microRNA-30c-2-3p. MicroRNA-30c-2-3p overexpression remarkably suppressed cell malignant behaviours, while reintroduction of STRIP2 partially restored the anticancer effect of microRNA-30c-2-3p. Taken together, these findings suggested that microRNA-30c-2-3p acted as a candidate tumour suppressor in GC by directly targeting STRIP2. Therefore, microRNA-30c-2-3p can be used as a towardly GC therapeutic target.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/metabolismo
4.
Sci Total Environ ; 814: 152746, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34979223

RESUMEN

As a type of soil stabilization material, zeolite has good cation exchange ability and synchronous stabilization potential for multiple active heavy metal cations in soil. However, natural zeolite contains relatively high amounts of impurities, and has a single heavy metal stabilization mechanism, which limits its capacity to stabilize heavy metals in soil. To develop a stabilization material that could efficiently stabilize several heavy metals simultaneously, in the present study, modified zeolite (MZEO) was prepared via NaCl pretreatment, chitosan modification, modified chitosan loading, and CaSiO3 modification to enable Pb, Cd, and Zn stabilization in soil. The aim of the present study was to explore zeolite modification technologies, reveal the stabilization mechanism of polymetallic contaminated soil and evaluate the stabilization effects of MZEO. According to the results, the modification treatment increased the cation exchange capacity of MZEO nearly 8-fold, the specific surface area 3.4-fold, and its internal pore structure was richer, with more adsorption sites. The appearance of a -NH2 absorption bands confirmed the loading of chitosan successfully, and the modification enhanced the heavy metal stabilization mechanism. Upon the addition of MZEO to Baiyin soil, the chemical morphologies of heavy metals changed, which reduced the weak acid extracted forms of Pb, Cd, and Zn in the soil by 21%, 10%, and 19%, respectively. The potential mechanisms of free heavy metal reduction were ion exchange with Na in MZEO, heavy metal mineral formation by Al replacement in the crystal lattice, and bonding with SiO32- formed by the hydrolysis of MZEO-loaded synaptic CaSiO3 particles, to form silicate precipitation. MZEO application minimized heavy metal leaching risk in the soil and heavy metal biological/plant accessibility, with potential economic benefits. MZEO has promising applications in polluted soil remediation.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Zeolitas , Cadmio , Plomo , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Zinc
5.
Onco Targets Ther ; 13: 7985-7995, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884288

RESUMEN

OBJECTIVE: The study aimed to explore the mechanism of miR-133b regulating the invasion and migration of gastric cancer (GC) cells via the COL1A1/TGF-ß axis. METHODS: The miRNA expression profiles of GC downloaded from TCGA database were subjected to differential analysis to determine the target miRNA of interest, and the target genes of the miRNA were predicted by bioinformatics. GSEA was used for gene enrichment analysis. qRT-PCR was carried out to detect gene expression in GC cells. The effect of miR-133b on GC cells was examined by CCK-8, wound healing and Transwell assays. Western blot was conducted to assess the protein expression of EMT-related proteins. The binding relationship between genes was verified by dual-luciferase reporter gene assay. RESULTS: The expression of miR-133b was markedly downregulated in GC tissue, while that of COL1A1 was upregulated. Overexpression of miR-133b decreased the migration and invasion of GC cells, and the EMT process was inhibited as well, while inverse results were observed when miR-133b was silenced. COL1A1 was a target gene of miR-133b and its overexpression had a significant impact on the prognosis of patients. GSEA pathway enrichment results showed that COL1A1 was markedly enriched in the TGF-ß signaling pathway. In addition, COL1A1 overexpression induced the activation of the TGF-ß signaling pathway to promote proliferation and migration of GC cells, whereas miR-133b overexpression suppressed the signaling pathway. Thus, overexpression of miR-133b and COL1A1 simultaneously would reverse the inhibitory effect of miR-133b on cell invasion and migration. CONCLUSION: In this study, miR-133b was found to inhibit the invasion and migration of GC cells via the COL1A1/TGF-ß axis, which provides a new research direction for the diagnosis and targeted therapy of GC.

6.
Artículo en Inglés | MEDLINE | ID: mdl-30463391

RESUMEN

Most soil remediation studies investigated single contaminants or multiple contaminants of the same type. However, in field conditions, soils are often contaminated with potentially both toxic metals and organic pollutants, posing a serious technical challenge. Here, batch experiments were conducted to evaluate the performance of combining in situ solidification/stabilization (ISS) and in situ chemical oxidation (ISCO) for the simultaneous removal of aniline (1000 mg/kg) and Cd (10 mg/kg). All four tested ISS amendments, especially quick lime and Portland cement, promoted in situ chemical oxidation with activated persulfate in contaminated soil. Combined ISS/ISCO remediation effectively removed aniline and reduced the bioavailable Cd content at optimal initial persulfate and ISS amendment concentrations of 1.08 mol/kg and 30 wt% with a seven-day curing time, and significantly reduced leaching. Persulfate inhibited the reduction of the bioavailable Cd content, and ISS amendment with persulfate did not synergistically remediate Cd in co-contaminated soil. Strong alkalinity and high temperature were the main mechanisms driving rapid pollutant removal and immobilization. The reaction of CaO with water released heat, and Ca(OH)2 formation increased the pH. The relative contributions of heat vs. alkaline activation, as well as the contaminant removal efficiency, increased with ISS amendment CaO content. Combined treatment altered the soil physicochemical properties, and significantly increased Ca and S contents. Activated persulfate-related reactions did not negatively impact unconfined compressive strength and hydraulic conductivity. This work improves the selection of persulfate activation methods for the treatment of soils co-contaminated with both potentially toxic metals and organic pollutants.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales/química , Oxidación-Reducción , Contaminantes del Suelo/química , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...