Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 586, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517747

RESUMEN

BACKGROUND: ASR (abscisic acid-, stress-, and ripening-induced) gene family plays a crucial role in responding to abiotic stresses in plants. However, the roles of ASR genes protecting plants against high salt and drought stresses remain unknown in Tamarix hispida. RESULTS: In this study, a salt and drought-induced ASR gene, ThASR3, was isolated from Tamarix hispida. Transgenic Arabidopsis overexpressing ThASR3 exhibited stimulating root growth and increasing fresh weight compared with wild-type (WT) plants under both salt and water deficit stresses. To further analyze the gain- and loss-of-function of ThASR3, the transgenic T. hispida plants overexpressing or RNA interference (RNAi)-silencing ThASR3 were generated using transient transformation. The overexpression of ThASR3 in Tamarix and Arabidopsis plants displayed enhanced reactive oxygen species (ROS) scavenging capability under high salt and osmotic stress conditions, including increasing the activities of antioxidant enzymes and the contents of proline and betaine, and reducing malondialdehyde (MDA) content and electrolyte leakage rates. CONCLUSION: Our results indicate that ThASR3 functions as a positive regulator in Tamarix responses to salt and osmotic stresses and confers multiple abiotic stress tolerances in transgenic plants, which may have an important application value in the genetic improvement of forest tree resistance.


Asunto(s)
Arabidopsis , Tamaricaceae , Tamaricaceae/genética , Tamaricaceae/metabolismo , Arabidopsis/metabolismo , Presión Osmótica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Sequías , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética
2.
BMC Plant Biol ; 22(1): 413, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008749

RESUMEN

BACKGROUND: Populus davidiana × P. bollena is a species of poplar from northeastern China that is characterized by cold resistance and fast growth but now suffers from pathogen infections. Leaf blight caused by Alternaria alternata has become a common poplar disease that causes serious economic impacts, but the molecular mechanisms of resistance to A. alternata in P. davidiana × P. bollena are still unclear. RESULTS: In this study, the transcriptomic response of P. davidiana × P. bollena to A. alternata infection was determined via RNA-Seq. Twelve cDNA libraries were generated from RNA isolated from three biological replicates at four time points (0, 2, 3, and 4 d post inoculation), and a total of 5,930 differentially expressed genes (DEGs) were detected (| log2 fold change |≥ 1 and FDR values < 0.05). Functional analysis revealed that the DEGs were mainly enriched for the "plant hormone signal transduction" pathway, followed by the "phenylpropanoid biosynthesis" pathway. In addition, DEGs that encode defense-related proteins and are related to ROS metabolism were also identified. Numerous transcription factors, such as the bHLH, WRKY and MYB families, were also induced by A. alternata infection. Among these DEGs, those related to JA biosynthesis and JA signal transduction were consistently activated. Therefore, the lipoxygenase gene PdbLOX2, which is involved in JA biosynthesis, was selected for functional characterization. Overexpression of PdbLOX2 enhanced the resistance of P. davidiana × P. bollena to A. alternata, whereas silencing this gene enhanced susceptibility to A. alternata infection. CONCLUSIONS: These results provide new insight into the molecular mechanisms of poplar resistance to A. alternata infection and provide candidate genes for breeding resistant cultivars using genetic engineering.


Asunto(s)
Populus , Alternaria/fisiología , Fitomejoramiento , Populus/genética , Populus/metabolismo , Transcriptoma
3.
Plant Physiol Biochem ; 165: 1-9, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34029940

RESUMEN

Stress associated proteins (SAPs), a class of A20/AN1 zinc finger domain-containing proteins, are involved in a variety of biotic and abiotic stress responses in plants. However, little is known about the SAP gene family and their functions in Tamarix hispida. In this study, we isolated and characterized 11 SAPs from T. hispida. The expression patterns of ThSAPs were analyzed under various stresses (salt and drought) and phytohormone treatment (SA, ABA and MeJA) using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Most ThSAPs exhibited transcriptional responses to abiotic stresses and phytohormones. Among these ThSAPs, ThSAP6 was significantly induced by salt stress. Gain-and loss-of-function analyses revealed that ThSAP6 was a positive regulator of salt stress response. Overexpression of ThSAP6 in T. hispida increased antioxidant enzymes activity and proline content and decreased reactive oxygen species (ROS) accumulation and cell membrane damage under salt stress, while the opposite physiological changes were observed in ThSAP6-RNAi (RNA interference) lines. This study provides a comprehensive description of the SAP gene family in T. hispida, and demonstrates that ThSAP6 is a potential candidate for biotechnological approaches to improve salt tolerance in plants.


Asunto(s)
Tamaricaceae , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Tamaricaceae/genética , Tamaricaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...