Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.419
Filtrar
1.
J Thorac Dis ; 16(4): 2443-2459, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738236

RESUMEN

Background: Myocardial infarction (MI) is one of the most lethal cardiovascular diseases. The loss of cardiomyocytes and the degradation of the extracellular matrix leads to high ventricular wall stress, which further drives the pathological thinning of the ventricular wall during MI. Injecting biomaterials to thicken the infarct ventricular wall provides mechanical support, thereby inhibiting the continued expansion of the heart. As an injectable biomaterial, alginate hydrogel has achieved exciting results in clinical trials, but further research needs to be conducted to determine whether it can improve cardiac function in addition to providing mechanical support. This study sought to explore these mechanisms in an animal model of MI. Methods: A MI model was established in male C57BL/6J mice by ligation of the proximal left anterior descending (LAD) coronary artery. Intramyocardial injections (hydrogel or saline group) were performed in the proximal wall regions bordering the infarct area (with one 20-µL injection). Four weeks after MI, RNA sequencing revealed that 342 messenger RNAs (mRNAs) from the infarcted hearts were differentially expressed between the saline group and hydrogel group. We subsequently conducted a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to analyze the RNA sequencing data. In addition, we employed both western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques to verify a number of genes that were differentially expressed and could potentially affect cardiac function after MI. Subsequently, we confirmed these findings through in vitro experiments. Results: We found that compared with hydrogel treatment group, 250 mRNAs were upregulated and 92 mRNAs were downregulated in saline group (P<0.05). And by exploring the GO and KEGG signaling pathways as well as the protein-protein interaction (PPI) network, we found that administration of alginate hydrogel modulated cardiomyocyte inflammation-associated proteins as well as chemokine-related proteins during the inflammatory response phase after MI. In addition, our analysis at both the protein and RNA level revealed that B2M was effective in improving cardiac function after MI in the hydrogel treatment group, which was consistent in the myocardium oxygen and glucose deprivation (OGD) injury model. Conclusions: We explored the transcriptome changes of infarcted hearts after alginate-hydrogel injection during the inflammatory response period. Our findings suggest that the injectable hydrogel directly alters the inflammatory response and the chemokine-mediated signaling pathway of cardiomyocytes, ultimately improving cardiac function.

2.
J Transl Med ; 22(1): 442, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730286

RESUMEN

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Colina , Células Endoteliales , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Persona de Mediana Edad , Pronóstico , Inmunoterapia , Terapia de Inmunosupresión , Estimación de Kaplan-Meier , Nomogramas , Reprogramación Metabólica
3.
J Transl Med ; 22(1): 486, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773508

RESUMEN

BACKGROUND: Immunotherapy has brought about a paradigm shift in the treatment of cancer. However, the majority of patients exhibit resistance or become refractory to immunotherapy, and the underlying mechanisms remain to be explored. METHODS: Sing-cell RNA sequencing (scRNA­seq) datasets derived from 1 pretreatment and 1 posttreatment achieving pathological complete response (pCR) patient with lung adenocarcinoma (LUAD) who received neoadjuvant immunotherapy were collected, and pySCENIC was used to find the gene regulatory network (GRN) between cell types and immune checkpoint inhibitor (ICI) response. A regulon predicting ICI response was identified and validated using large­scale pan-cancer data, including a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 5 ICI transcriptomic cohorts. Symphony reference mapping was performed to construct the myeloid cell map. RESULTS: Thirteen major cluster cell types were identified by comparing pretreatment and posttreatment patients, and the fraction of myeloid cells was higher in the posttreatment group (19.0% vs. 11.8%). A PPARG regulon (containing 23 target genes) was associated with ICI response, and its function was validated by a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, TCGA pan-cancer cohort, and 5 ICI transcriptomic cohorts. Additionally, a myeloid cell map was developed, and cluster I, II, and III myeloid cells with high expression of PPARG were identified. Moreover, we constructed a website called PPARG ( https://pparg.online/PPARG/ or http://43.134.20.130:3838/PPARG/ ), which provides a powerful discovery tool and resource value for researchers. CONCLUSIONS: The PPARG regulon is a predictor of ICI response. The myeloid cell map enables the identification of PPARG subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Asunto(s)
Inmunoterapia , Células Mieloides , Terapia Neoadyuvante , Neoplasias , Regulón , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Regulón/genética , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/inmunología , Resultado del Tratamiento , Redes Reguladoras de Genes , Femenino , Regulación Neoplásica de la Expresión Génica
4.
Front Public Health ; 12: 1375533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756891

RESUMEN

Background: Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods: A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results: Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion: Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.


Asunto(s)
Análisis Costo-Beneficio , Cadenas de Markov , Carcinoma Nasofaríngeo , Humanos , China/epidemiología , Persona de Mediana Edad , Masculino , Adulto , Femenino , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Anciano , Neoplasias Nasofaríngeas/diagnóstico , Detección Precoz del Cáncer/economía , Tamizaje Masivo/economía , Herencia Multifactorial , Factores de Riesgo , Medición de Riesgo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38758616

RESUMEN

Brain-computer interfaces (BCIs) have been widely focused and extensively studied in recent years for their huge prospect of medical rehabilitation and commercial applications. Transfer learning exploits the information in the source domain and applies in another different but related domain (target domain), and is therefore introduced into the BCIs to figure out the inter-subject variances of electroencephalography (EEG) signals. In this article, a novel transfer learning method is proposed to preserve the Riemannian locality of data structure in both the source and target domains and simultaneously realize the joint distribution adaptation of both domains to enhance the effectiveness of transfer learning. Specifically, a Riemannian graph is first defined and constructed based on the Riemannian distance to represent the Riemannian geometry information. To simultaneously align the marginal and conditional distribution of source and target domains and preserve the Riemannian locality of data structure in both domains, the Riemannian graph is embedded in the joint distribution adaptation (JDA) framework and forms the proposed Riemannian locality preserving-based transfer learning (RLPTL). To validate the effect of the proposed method, it is compared with several existing methods on two open motor imagery datasets, and both multi-source domains (MSD) and single-source domains (SSD) experiments are considered. Experimental results show that the proposed method achieves the highest accuracies in MSD and SSD experiments on three datasets and outperforms eight baseline methods, which demonstrates that the proposed method creates a feasible and efficient way to realize transfer learning.

6.
J Food Sci Technol ; 61(6): 1201-1213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38562598

RESUMEN

Vitamin A, also known as retinol, is a fat-soluble vitamin that plays crucial role in various physiological functions In vivo. However, factors such as light, oxygen, and others may impact the stability of VA. To enhance its stability. This study microencapsulated VA, Gelatin, carboxymethyl cellulose, and salt were mixed in a ratio of 5:1:0.1 as the shell material. Additionally, 12% TG and 3.5% sucrose ester were added with core-shell ratio of 1:8. The experimental results indicated that VA microcapsules exhibited an encapsulation efficiency of 81.12%, after 9 weeks of storage this rate decreased to 75.38%, and the encapsulated VA oil did not exhibit extravasation. The addition of an appropriate amount of salt to the shell material enhanced the mechanical properties of the shell material, compared to the shell material without added salt, the leakage of VA in the salt-added sample decreased by 5.8% for 30 min and 14.5% for 60 min. In vitro release experiments showed that after 3 h of incubation in simulated gastric fluid, the microcapsules had an 18.52% release rate. In simulated intestinal fluid, this increased to 66.58%, indicating strong enteric solubility. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05962-w.

7.
IEEE Trans Biomed Eng ; PP2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602850

RESUMEN

OBJECTIVE: The information transfer rate (ITR) is widely accepted as a performance metric for generic brain-computer interface (BCI) spellers, while it is noticeable that the communication speed given by ITR is actually an upper bound which however can never be reached in real systems. A new performance metric is therefore needed. METHODS: In this paper, a new metric named average time consumption per character (ATCPC) is proposed. It quantifies how long it takes on average to type one character using a typical synchronous BCI speller. To analytically derive ATCPC, the real typing process is modelled with a random walk on a graph. Misclassification and backspace are carefully characterized. A close-form formula of ATCPC is obtained through computing the hitting time of the random walk. The new metric is validated through simulated typing experiments and compared with ITR. RESULTS: Firstly, the formula and simulation show a good consistency. Secondly, ITR always tends to overestimate the communication speed, while ATCPC is more realistic. CONCLUSION: The proposed ATCPC metric is valid. SIGNIFICANCE: ATCPC is a qualified substitute for ITR. ATCPC also reveals the great potential of keyboard optimization to further enhance the performance of BCI spellers, which was hardly investigated before.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38616327

RESUMEN

Endometrial cancer is considered to be the second most common tumor of the female reproductive system, and patients diagnosed with advanced endometrial cancer have a poor prognosis. The influence of fatty acid metabolism in the prognosis of patients with endometrial cancer remains unclear. We constructed a prognostic risk model using transcriptome sequencing data of endometrial cancer and clinical information of patients from The Cancer Genome Atlas (TCGA) database via least absolute shrinkage and selection operator regression analysis. The tumor immune microenvironment was analyzed using the CIBERSORT algorithm, followed by functional analysis and immunotherapy efficacy prediction by gene set variation analysis. The role of model genes in regulating endometrial cancer in vitro was verified by CCK-8, colony formation, wound healing, and transabdominal invasion assays, and verified in vivo by subcutaneous tumor transplantation in nude mice. A prognostic model containing 14 genes was constructed and validated in 3 cohorts and clinical samples. The results showed differences in the infiltration of immune cells between the high-risk and low-risk groups, and that the high-risk group may respond better to immunotherapy. Experiments in vitro confirmed that knockdown of epoxide hydrolase 2 (EPHX2) and acyl-CoA oxidase like (ACOXL) had an inhibitory effect on EC cells, as did overexpression of hematopoietic prostaglandin D synthase (HPGDS). The same results were obtained in experiments in vivo. Prognostic models related to fatty acid metabolism can be used for the risk assessment of endometrial cancer patients. Experiments in vitro and in vivo confirmed that the key genes HPGDS, EPHX2, and ACOXL in the prognostic model may affect the development of endometrial cancer.

9.
Plants (Basel) ; 13(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611533

RESUMEN

Cotton is a critical crop with massive economic implications worldwide. Verticillium wilt is a soil-borne ailment caused by Verticillium dahliae, which harms the growth and development of cotton. Therefore, investigating the genes associated with resistance to verticillium wilt is of particular significance. In this study, we identified the GhIQD1 gene through transcriptome analysis and experimentally characterized the role of the GhIQD1 gene in cotton against V. dahliae. The findings indicated that GhIQD1 acts as a calmodulin-binding protein. The expression of GhIQD1 was the highest in stems, and the expression level increased significantly following infection with V. dahliae. The expression in resistant cotton varieties was higher than in susceptible cotton varieties. Through overexpression of the GhIQD1 gene in tobacco, these transgenic plants exhibited improved resistance to V. dahliae. In contrast, by silencing the GhIQD1 gene in cotton through VIGS, the resistance to V. dahliae was reduced. Following inoculation, the leaves yellowed, and the disease index was higher. Transcriptome analysis of transgenic tobacco 72 h after inoculation indicated that overexpression of GhIQD1 increased the enrichment of the calmodulin pathway and stimulated the production of plant hormones alongside secondary metabolites. Consequently, we investigated the relationship between the GhIQD1 gene and plant disease-resistant hormones SA, JA, and ABA. In summary, this study uncovered the mechanism by which GhIQD1 conferred resistance to V. dahliae in cotton through positive regulation of JA and ABA, providing crucial information for further research on the adaptation of plants to pathogen invasion.

10.
J Res Adolesc ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650355

RESUMEN

An exploratory mixed methods design was used to explore age-appropriate characteristics of parental response to emotion (PRE) during adolescence in Chinese families and develop the parental response to adolescents' emotions scale (C-PRAES). Qualitative interviews with 21 parent-adolescent dyads were employed to explore characteristics of PRE in adolescence and generate item pools. Structural validity, criterion validity, measurement invariance across informants (adolescents vs. parents, mothers vs. fathers) and consistency reliability were examined in the quantitative phase (Nadolescent = 702, Nparent = 476). New age-appropriate strategies were generated from qualitative phase: Guidance in reappraisal, Allowing independent regulation, and Avoiding escalation of conflict. The formal version of the C-PRAES comprised items in two dimensions (supportive/non-supportive) and exhibited good validity, reliability, and measurement invariance.

11.
Angew Chem Int Ed Engl ; : e202402949, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644342

RESUMEN

Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2-), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2- is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2- generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2-, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.

12.
Res Sq ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38585924

RESUMEN

Racial/ethnic differences are associated with the potential symptoms and conditions of post-acute sequelae SARS-CoV-2 infection (PASC) in adults. These differences may exist among children and warrant further exploration. We conducted a retrospective cohort study for children and adolescents under the age of 21 from the thirteen institutions in the RECOVER Initiative. The cohort is 225,723 patients with SARS-CoV-2 infection or COVID-19 diagnosis and 677,448 patients without SARS-CoV-2 infection or COVID-19 diagnosis between March 2020 and October 2022. The study compared minor racial/ethnic groups to Non-Hispanic White (NHW) individuals, stratified by severity during the acute phase of COVID-19. Within the severe group, Asian American/Pacific Islanders (AAPI) had a higher prevalence of fever/chills and respiratory symptoms, Hispanic patients showed greater hair loss prevalence in severe COVID-19 cases, while Non-Hispanic Black (NHB) patients had fewer skin symptoms in comparison to NHW patients. Within the non-severe group, AAPI patients had increased POTS/dysautonomia and respiratory symptoms, and NHB patients showed more cognitive symptoms than NHW patients. In conclusion, racial/ethnic differences related to COVID-19 exist among specific PASC symptoms and conditions in pediatrics, and these differences are associated with the severity of illness during acute COVID-19.

13.
Chem Commun (Camb) ; 60(40): 5338-5341, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38668872

RESUMEN

An ultrahigh-performance magnesium/sodium hybrid-ion battery (MNHB) is developed using ternary CoSe/NiSe2/CuSe2 (CNCS) "micro-flowers" as cathode materials, working with a coordinative [Mg2Cl2][AlCl4]2 and bis(trifluoroethylsulfonyl)imide anionic sodium salt in triglyme electrolyte. After 2000 cycles at 2.0 A g-1, the MNHB shows a stable capacity of 115.5 mA h g-1 and a high Coulombic efficiency exceeding 99.8%. The battery shows very rapid charging, and good stability in extreme environments, providing new opportunities to develop other hybrid-ion systems.

14.
Sci Rep ; 14(1): 9274, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654053

RESUMEN

Myocardial infarction (MI) is the leading cause of premature death. The death of cardiomyocytes (CMs) and the dysfunction of the remaining viable CMs are the main pathological factors contributing to heart failure (HF) following MI. This study aims to determine the transcriptional profile of CMs and investigate the heterogeneity among CMs under hypoxic conditions. Single-cell atlases of the heart in both the sham and MI groups were developed using single-cell data (GSE214611) downloaded from Gene Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/ ). The heterogeneity among CMs was explored through various analyses including enrichment, pseudo time, and intercellular communication analysis. The marker gene of C5 was identified using differential expression analysis (DEA). Real-time polymerase chain reaction (RT-PCR), bulk RNA-sequencing dataset analysis, western blotting, immunohistochemical and immunofluorescence staining, Mito-Tracker staining, TUNEL staining, and flow cytometry analysis were conducted to validate the impact of the marker gene on mitochondrial function and cell apoptosis of CMs under hypoxic conditions. We identified a cell subcluster named C5 that exhibited a close association with mitochondrial malfunction and cellular apoptosis characteristics, and identified Slc25a4 as a significant biomarker of C5. Furthermore, our findings indicated that the expression of Slc25a4 was increased in failing hearts, and the downregulation of Slc25a4 improved mitochondrial function and reduced cell apoptosis. Our study significantly identified a distinct subcluster of CMs that exhibited strong associations with ventricular remodeling following MI. Slc25a4 served as the hub gene for C5, highlighting its significant potential as a novel therapeutic target for MI.


Asunto(s)
Apoptosis , Infarto del Miocardio , Miocitos Cardíacos , Análisis de la Célula Individual , Transcriptoma , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Análisis de la Célula Individual/métodos , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Masculino , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Ratones
15.
Diabetes Res Clin Pract ; 211: 111679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649068

RESUMEN

AIM: To investigate the causal relationship between metabolic syndrome (MetS) and its components and 14 cardiovascular diseases using Mendelian randomization (MR). METHODS: We used summary statistics from large-scale genome-wide association studies of MetS, its components, and cardiovascular diseases. We performed a two-sample MR analysis using the inverse-variance weighted method and other sensitivity methods. We also performed multivariate MR to adjust for potential risk factors. RESULTS: Our study found that MetS was causally associated with an increased risk of ischemic stroke, abdominal aortic aneurysm, pulmonary embolism, coronary heart disease, heart failure, and peripheral artery disease. Waist circumference was causally associated with an increased risk of 6 cardiovascular diseases. Type 2 diabetes mellitus, diastolic blood pressure, systolic blood pressure, triglycerides, and high-density lipoprotein cholesterol were all causally associated with coronary heart disease, with varying causal relationships with the remaining 5 cardiovascular diseases. Multivariate MR showed that, except for ischaemic stroke, waist circumference remained causally associated with the remaining five cardiovascular diseases after adjusting for potential confounders. CONCLUSION: Our study provides evidence that metabolic syndrome is causally associated with 6 cardiovascular diseases. Waist circumference is the most important component of these relationships. These findings have implications for the prevention and management of metabolic syndrome and cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Síndrome Metabólico , Circunferencia de la Cintura , Síndrome Metabólico/genética , Síndrome Metabólico/epidemiología , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/etiología , Factores de Riesgo , Masculino , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Femenino
16.
Biomater Sci ; 12(10): 2743-2754, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639493

RESUMEN

Highly sensitive iron oxide nanoparticles with stable, safe and efficient surface functionalization, as potential substitutes for gadolinium-based contrast agents (GBCAs) with increasing biosafety concerns, exhibit great potential for high-performance magnetic resonance angiography (MRA). Herein, we developed ultrasmall catechol-PEG-anchored ferrite nanoparticles (PEG-UMFNPs) for highly sensitive MRA. The obtained nanoprobe has a high T1 relaxivity value (7.2 mM-1 s-1) due to its ultrasmall size and Mn doping. It has a suitable hydrodynamic size of 20 nm, which prevents rapid vascular extravasation and renal clearance and prolongs its blood circulation time. In vivo MRA at 3.0 T using the nanoprobe shows that the arteries and veins of rats, even blood vessels as small as 0.32 mm, are distinctly visible, and the contrast enhancement can last for at least 1 h. In addition, due to the outstanding contrast enhancement and long circulation time, the stenosis and recanalization process of the rat's carotid artery can be continuously monitored with a single injection of the nanoprobe. Our study indicates that PEG-UMFNPs are outstanding MR imaging nanoprobes that can be used to diagnose vascular diseases without the biosafety issues of GBCAs.


Asunto(s)
Catecoles , Medios de Contraste , Compuestos Férricos , Angiografía por Resonancia Magnética , Polietilenglicoles , Ratas Sprague-Dawley , Animales , Polietilenglicoles/química , Ratas , Catecoles/química , Compuestos Férricos/química , Medios de Contraste/química , Masculino , Nanopartículas/química , Arterias Carótidas/diagnóstico por imagen
17.
Front Neurosci ; 18: 1367932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660227

RESUMEN

Steady-state visual evoked potential brain-computer interfaces (SSVEP-BCI) have attracted significant attention due to their ease of deployment and high performance in terms of information transfer rate (ITR) and accuracy, making them a promising candidate for integration with consumer electronics devices. However, as SSVEP characteristics are directly associated with visual stimulus attributes, the influence of stereoscopic vision on SSVEP as a critical visual attribute has yet to be fully explored. Meanwhile, the promising combination of virtual reality (VR) devices and BCI applications is hampered by the significant disparity between VR environments and traditional 2D displays. This is not only due to the fact that screen-based SSVEP generally operates under static, stable conditions with simple and unvaried visual stimuli but also because conventional luminance-modulated stimuli can quickly induce visual fatigue. This study attempts to address these research gaps by designing SSVEP paradigms with stereo-related attributes and conducting a comparative analysis with the traditional 2D planar paradigm under the same VR environment. This study proposed two new paradigms: the 3D paradigm and the 3D-Blink paradigm. The 3D paradigm induces SSVEP by modulating the luminance of spherical targets, while the 3D-Blink paradigm employs modulation of the spheres' opacity instead. The results of offline 4-object selection experiments showed that the accuracy of 3D and 2D paradigm was 85.67 and 86.17% with canonical correlation analysis (CCA) and 86.17 and 91.73% with filter bank canonical correlation analysis (FBCCA), which is consistent with the reduction in the signal-to-noise ratio (SNR) of SSVEP harmonics for the 3D paradigm observed in the frequency-domain analysis. The 3D-Blink paradigm achieved 75.00% of detection accuracy and 27.02 bits/min of ITR with 0.8 seconds of stimulus time and task-related component analysis (TRCA) algorithm, demonstrating its effectiveness. These findings demonstrate that the 3D and 3D-Blink paradigms supported by VR can achieve improved user comfort and satisfactory performance, while further algorithmic optimization and feature analysis are required for the stereo-related paradigms. In conclusion, this study contributes to a deeper understanding of the impact of binocular stereoscopic vision mechanisms on SSVEP paradigms and promotes the application of SSVEP-BCI in diverse VR environments.

18.
Nano Lett ; 24(15): 4400-4407, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568187

RESUMEN

We developed a magnesium/sodium (Mg/Na) hybrid battery using a hierarchical disk-whisker FeSe2 architecture (HD-FeSe2) as the cathode material and a modified dual-ion electrolyte. The polarizable Se2- anion reduced the Mg2+ migration barrier, and the 3D configuration possessed a large surface area, which facilitated both Mg2+/Na+ cation diffusion and electron transport. The dual-ion salts with NaTFSI in ether reduced the Mg plating/stripping overvoltage in a symmetric cell. The hybrid battery exhibited an energy density of 260.9 Wh kg-1 and a power density of 600.8 W kg-1 at 0.2 A g-1. It showed a capacity retention of 154 mAh g-1 and a Coulombic efficiency of over 99.5% under 1.0 A g-1 after 800 long cycles. The battery also displayed outstanding temperature tolerance. The findings of 3D architecture as cathode material and hybrid electrolyte provide a pathway to design a highly reliable Mg/Na hybrid battery.

19.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
20.
Chin Med ; 19(1): 60, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589903

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS: A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-ß to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-ß with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS: In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION: The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA