Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Nutr ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880175

RESUMEN

BACKGROUND: The incongruity between dietary patterns and the circadian clock poses an elevated risk for metabolic health issues, particularly obesity and associated metabolic disorders. The intestinal microflora engages in regulating various physiological functions of the host through its metabolites. OBJECTIVE: This study aimed to investigate the impact of reversed feeding schedules during the day and night on intestinal flora and lipid metabolism in high-fat-induced obese mice. METHODS: Mice aged 8-10 weeks were subjected to either daytime or nighttime feeding, and were administered a control or high-fat diet for 18 weeks. At the end of the experiment, various assessments were conducted, including analysis of serum biochemical indices, histological examination, evaluation of gene and protein expression in adipose tissue, and scrutiny of changes in intestinal microbial composition. RESULTS: The results showed that day-night reversed feeding caused an increase in fasting blood glucose, and exacerbated the high-fat diet-induced weight gain and lipid abnormalities. The mRNA expression levels of Leptin and Dgat1 were increased by day-night reversed feeding, which also reduced the expression level of adiponectin under the high-fat diet. Additionally, there was a significant increase in the protein levels of PPARγ, SREBP1c, and CD36. Inverted feeding schedules led to a reduction in intestinal microbial diversity, an increase in the abundance of inflammation-related bacteria, such as Coriobacteriaceae_UCG-002, and a suppression of beneficial bacteria, including Akkermansia, Candidatus_Saccharimonas, Anaeroplasma, Bifidobacterium, Carnobacterium, and Odoribacter. Acinetobacter exhibited a significant negative correlation with Leptin and Fasn, suggesting potential involvement in the regulation of lipid metabolism. CONCLUSIONS: The results elucidated the abnormalities of lipid metabolism and intestinal flora caused by day-night reversed feeding, which exacerbates the adverse effects of a high-fat diet on lipid metabolism and intestinal microflora. This reversal in feeding patterns may disrupt both intestinal and lipid metabolism homeostasis by altering the composition and abundance of intestinal microflora in mice.

2.
Small ; : e2402946, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881253

RESUMEN

Oil-water separation based on superwettable materials offers a promising way for the treatment of oil-water mixtures and emulsions. Nevertheless, such separation techniques often require complex devices and external energy input. Therefore, it remains a great challenge to separate oil-water mixtures and emulsions through an energy-efficient, economical, and sustainable way. Here, a novel approach demonstrating the successful separation of oil-water emulsions using antigravity-driven autonomous superwettable pumps is presented. By transitioning from traditional gravity-driven to antigravity-driven separation, the study showcases the unprecedented success in purifying oil/water from emulsions by capillary/siphon-driven superwettable autonomous pumps. These pumps, composed of self-organized interconnected channels formed by the packing of superhydrophobic and superhydrophilic sand particles, exhibit outstanding separation flux, efficiency, and recyclability. The findings of this study not only open up a new avenue for oil-water emulsion separation but also hold promise for profound impacts in the field.

3.
Pharmaceuticals (Basel) ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38794152

RESUMEN

(1) Background: OSU-2S is a derivative of FTY720 and exhibits significant inhibitory effects on various cancer cells. There is currently no research on the mechanism of the impact of OSU-2S on NSCLC development. We analysed and validated the hub genes and pharmacodynamic effects of OSU-2S to treat NSCLC. (2) Methods: The hub genes of OSU-2S for the treatment of NSCLC were screened in PharmMapper, genecard, and KM Plotter database by survival and expression analysis. The effect of OSU-2S on hub gene expression was verified by Western blot analysis. The ex vivo and in vivo efficacy of OSU-2S on tumour growth was verified using A549 cells and a xenografted animal model. (3) Results: A total of 7 marker genes for OSU-2S treatment of NSCLC were obtained. AURKA and S1PR1 were screened as hub genes. Significant differences in the expression of AURKA and S1PR1 between normal and lung adenocarcinoma (LUAD) tissues were found in the GEPIA2 database; Western blot showed that OSU-2S could affect p-AURKA and S1PR1 protein expression. OSU-2S significantly inhibited tumour growth in A549 cells and xenografted animal models. (4) Conclusions: Our study confirms the inhibitory effect of OSU-2S on NSCLC, screens and demonstrates its potential targets AURKA(p-AURKA) and S1PR1, and provides a research basis for treating NSCLC with OSU-2S.

4.
Arch Esp Urol ; 77(3): 249-255, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38715165

RESUMEN

OBJECTIVE: To study the effect of high-simulation teaching on nursing students' learning knowledge related to stoma tube care after ureteral flexible mirror lithotripsy. METHODS: A total of 80 nursing students who were admitted to our hospital from January 2020 to December 2022 were selected as the study objects. They were divided into the control group (traditional teaching) and observation group (high-simulation teaching based on traditional teaching) in accordance with teaching method. General demographic information and specialty theory, Objective Structured Clinical Examination, Chinese Critical Thinking Disposition Inventory, Teaching Quality Evaluation Scale and System for Evaluation of Teaching Qualities scores were collected from both groups of nursing students. Data were analysed with t- and chi-square tests. RESULTS: The general demographics of the two groups were not statistically significantly different (p > 0.05). No significant differences in examination scores, clinical skills, thinking skills, teaching quality and nursing students' satisfaction were found between the two groups before teaching (p > 0.05). Examination scores, clinical skills, thinking skills, teaching quality and nursing students' satisfaction were higher in the observation group than in the control group after teaching (p < 0.05). CONCLUSIONS: High-simulation teaching can effectively improve theoretical and clinical skill examination results, strengthen critical thinking, and improve teaching quality and nursing students' overall satisfaction with teaching. Therefore, it has application value.


Asunto(s)
Educación en Enfermería , Humanos , Femenino , Educación en Enfermería/métodos , Masculino , Litotricia , Adulto Joven , Entrenamiento Simulado/métodos , Estudiantes de Enfermería , Competencia Clínica , Adulto
5.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643607

RESUMEN

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Asunto(s)
Búfalos , Butadienos , Factor 10 de Crecimiento de Fibroblastos , Técnicas de Maduración In Vitro de los Oocitos , Nitrilos , Oocitos , Animales , Búfalos/embriología , Factor 10 de Crecimiento de Fibroblastos/farmacología , Butadienos/farmacología , Oocitos/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Nitrilos/farmacología , Femenino , Oogénesis/efectos de los fármacos , Células del Cúmulo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo
6.
Oncol Res ; 32(5): 911-923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686054

RESUMEN

Photodynamic therapy (PDT) is a promising cancer treatment. This study investigated the antitumor effects and mechanisms of a novel photosensitizer meso-5-[ρ-diethylene triamine pentaacetic acid-aminophenyl]-10,15,20-triphenyl-porphyrin (DTP) mediated PDT (DTP-PDT). Cell viability, reactive oxygen species (ROS), and apoptosis were measured with a Cell Counting Kit-8 assay, DCFH-DA fluorescent probe, and Hoechst staining, respectively. Cell apoptosis- and autophagy-related proteins were examined using western blotting. RNA sequencing was used to screen differentially expressed mRNAs (DERs), and bioinformatic analysis was performed to identify the major biological events after DTP-PDT. Our results show that DTP-PDT inhibited cell growth and induced ROS generation in MCF-7 and SGC7901 cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and the P38 MAPK inhibitor SB203580 alleviated DTP-PDT-induced cytotoxicity. DTP-PDT induced cell apoptosis together with upregulated Bax and downregulated Bcl-2, which could also be inhibited by NAC or SB203580. The level of LC3B-II, a marker of autophagy, was increased by DTP-PDT. A total of 3496 DERs were obtained after DTP-PDT. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DERs included those involved in cytosolic ribosomes, the nuclear lumen, protein binding, cell cycle, protein targeting to the endoplasmic reticulum, and ribosomal DNA replication. Disease Ontology and Reactome enrichment analyses indicated that DERs were associated with a variety of cancers and cell cycle checkpoints. Protein-protein interaction results demonstrated that cdk1 and rps27a ranked in the top 10 interacting genes. Therefore, DTP-PDT could inhibit cell growth and induce cell apoptosis and autophagy, partly through ROS and the P38 MAPK signaling pathway. Genes associated with the cell cycle, ribosomes, DNA replication, and protein binding may be the key changes in DTP-PDT-mediated cytotoxicity.


Asunto(s)
Apoptosis , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Transcriptoma , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Porfirinas/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Células MCF-7 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Perfilación de la Expresión Génica
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1052-1063, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621912

RESUMEN

The mechanism of total polyphenols of Cydonia oblonga Miller(TPCOM) against kidney cancer was elucidated through a combination of network pharmacology, bioinformatics, and experimental verification. The active polyphenolic compounds from C. oblonga were screened by network pharmacological techniques and kidney cancer-related targets were collected through the database. The differential gene expression analysis was performed on RNA sequencing data from tumor tissue and normal tissue of kidney cancer patients obtained from the Gene Expression Omnibus(GEO) database. The results of network pharmacology predictions and differential gene expression analysis were used to identify the core genes targeted by TPCOM in kidney cancer. Survival analysis was conducted to identify key targets that could impact patient survival, followed by Kyoto Encyclopedia of Genes and Genomes(KEGG) and Gene Ontology(GO) enrichment analyses. Cell proliferation and activity experiments(cell counting kit-8) were conducted using TPCOM at concentrations ranging from 20 to 640 µg·mL~(-1) on 786-O and Renca cells. Additionally, TPCOM at concentrations of 40, 80, and 160 µg·mL~(-1) was applied to kidney cancer cells to assess its effect on cell migration and its regulation of protein expression levels related to the protein kinase B(Akt), mammalian target of rapamycin(mTOR), and phosphoinositide 3-kinase(PI3K) signaling pathways. Network pharmacology predicted eight active polyphenolic compounds from C. oblonga. Survival analysis revealed 15 significantly differentially expressed genes in kidney cancer that were affected by TPCOM and had a significant impact on patient survival. KEGG and GO analysis results indicated that these 15 targets were primarily associated with the PI3K/Akt signaling pathway, cell migration, and proliferation. The results showed that TPCOM could inhibit the proliferation of 786-O and Renca cells, with IC_(50) values of 121.4 and 137.9 µg·mL~(-1), respectively. TPCOM was also found to inhibit the migration of these cells and suppress the PI3K/Akt/mTOR signaling pathway. TPCOM may exert its anti-kidney cancer effects by inhibiting the activation of the PI3K/Akt/mTOR signaling pathway, thereby restraining the proliferation and migration of kidney cancer cells. This study provides a foundation for the research on the anti-tumor effects of natural product C. oblonga, particularly in Xinjiang, and holds significance for further promoting its development and utilization.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Serina-Treonina Quinasas TOR/genética , Proliferación Celular , Simulación del Acoplamiento Molecular
8.
Phys Rev Lett ; 132(7): 070203, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427853

RESUMEN

Uncertainty relations for Hermitian operators have been confirmed through many experiments. However, previous experiments have only tested the special case of non-Hermitian operators, i.e., uncertainty relations for unitary operators. In this study, we explore uncertainty relations for general non-Hermitian operators, which include Hermitian and unitary operators as special cases. We perform experiments with both real and complex non-Hermitian operators for qubit states, and confirm the validity of the uncertainty relations within the experimental error. Our results provide experimental evidence of uncertainty relations for non-Hermitian operators. Furthermore, our methods for realizing and measuring non-Hermitian operators are valuable in characterizing open-system dynamics and enhancing parameter estimation.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38348310

RESUMEN

Purpose: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by intense lung infiltrations of immune cells (macrophages and monocytes). While existing studies have highlighted the crucial role of the competitive endogenous RNA (ceRNA) regulatory network in COPD development, the complexity and characteristics of the ceRNA network in monocytes remain unexplored. Methods: We downloaded messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) microarray data from GSE146560, GSE102915, and GSE71220 in the Gene Expression Omnibus (GEO) database. This data was used to identify differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs). Predicted miRNAs that bind to DElncRNAs were intersected with DEmiRNAs, forming a set of intersecting miRNAs. This set was then used to predict potential binding mRNAs, intersected with DEmRNAs, and underwent functional enrichment analysis using R software and the STRING database. The resulting triple regulatory network and hub genes were constructed using Cytoscape. Comparative Toxicomics Database (CTD) was utilized for disease correlation predictions, and ROC curve analysis assessed diagnostic accuracy. Results: Our study identified 5 lncRNAs, 4 miRNAs, and 149 mRNAs as differentially expressed. A lncRNA-miRNA-mRNA regulatory network was constructed, and hub genes were selected through hub analysis. Enrichment analysis highlighted terms related to cell movement and gene expression regulation. We established a LINC00482-has-miR-6088-PRRC2B ceRNA network with diagnostic relevance for COPD. ROC analysis demonstrated the diagnostic value of these genes. Moreover, a positive correlation between LINC00482 and PRRC2B expression was observed in COPD PBMCs. The CTD database indicated their involvement in inflammatory responses. Conclusion: In summary, our study not only identified pivotal hub genes in peripheral blood mononuclear cells (PBMCs) of COPD but also constructed a ceRNA regulatory network. This contributes to understanding the pathophysiological processes of COPD through bioinformatics analysis, expanding our knowledge of COPD, and providing a foundation for potential diagnostic and therapeutic targets for COPD.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Humanos , Redes Reguladoras de Genes , Leucocitos Mononucleares , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , ARN Endógeno Competitivo , ARN Largo no Codificante/genética , ARN Mensajero/genética
10.
Cell Commun Signal ; 22(1): 117, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347600

RESUMEN

Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Proteína HMGB1 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Neoplasias Colorrectales/metabolismo , Citosol/metabolismo , Proteína HMGB1/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética , Microambiente Tumoral
11.
Bioresour Technol ; 395: 130366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266783

RESUMEN

Single cell oil (SCO) prepared from biodiesel-derived crude glycerol (BCG) and lignocellulosic biomass (LCB) via oleaginous yeasts is an intriguing alternative precursor of biodiesel. Here, a novel strategy combining alkaline BCG pretreated corn stover and dilute acid pretreated water hyacinth for SCO overproduction was developed. The mixed pretreatment liquors (MPLs) were naturally neutralized and adjusted to a proper carbon-to-nitrogen ratio beneficial for SCO overproduction by Cutaneotrichosporon oleaginosum. The toxicity of inhibitors was relieved by dilution detoxification. The enzymatic hydrolysate of solid fractions was suitable for SCO production either separately or simultaneously with MPLs. Fed-batch fermentation of the MPLs resulted in high cell mass, SCO content, and SCO titer of 80.7 g/L, 75.7 %, and 61.1 g/L, respectively. The fatty acid profiles of SCOs implied high-quality biodiesel characteristics. This study offers a novel BCG&LCB-to-SCO route integrating BCG-based pretreatment and BCG/LCB hydrolysates co-utilization, which provides a cost-effective technical route for micro-biodiesel production.


Asunto(s)
Basidiomycota , Eichhornia , Glicerol , Biocombustibles , Zea mays , Lípidos , Levaduras , Fermentación , Ácidos , Biomasa
12.
Curr Top Med Chem ; 24(3): 192-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185890

RESUMEN

FTY720 is an analog of sphingosine-1-phosphate (S1P) derived from the ascomycete Cordyceps sinensis. As a new immunosuppressant, FTY720 is widely used to treat multiple sclerosis. FTY720 binds to the S1P receptor after phosphorylation, thereby exerting immunosuppressive effects. The nonphosphorylated form of FTY720 can induce cell apoptosis, enhance chemotherapy sensitivity, and inhibit tumor metastasis of multiple tumors by inhibiting SPHK1 (sphingosine kinase 1) and activating PP2A (protein phosphatase 2A) and various cell death pathways. FTY720 can induce neutrophil extracellular traps to neutralize and kill pathogens in vitro, thus exerting anti- infective effects. At present, a series of FTY720 derivatives, which have pharmacological effects such as anti-tumor and alleviating airway hyperresponsiveness, have been developed through structural modification. This article reviews the pharmacological effects of FTY720 and its derivatives.


Asunto(s)
Clorhidrato de Fingolimod , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/química , Humanos , Animales , Inmunosupresores/farmacología , Inmunosupresores/química , Inmunosupresores/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Apoptosis/efectos de los fármacos
13.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38293320

RESUMEN

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Selenio , Animales , Ratones , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Selenito de Sodio/farmacología , Ratones Endogámicos C57BL , Citotoxinas , Infecciones por Helicobacter/metabolismo
14.
Foods ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254576

RESUMEN

It is known that phospholipase C (PLC) enzymatic degumming can hydrolyze phospholipids into diacylglycerol (DAG), which improves the efficiency of oil processing. However, it is unclear whether the presence of DAG and the use of enzymes affect the performance of the oil. This paper evaluated the frying performance of PLC-degummed refined soybean oil. Following the chicken wings and potato chips frying trials, results revealed that after 30 cycles of frying, free fatty acid (FFA) levels were 0.22% and 0.21%, with total polar compounds (TPC) at 23.75% and 24.00%, and peroxide value (PV) levels were 5.90 meq/kg and 6.45 meq/kg, respectively. Overall, PLC-degummed refined soybean oil showed almost the same frying properties as traditional water-degummed refined oil in terms of FFA, PV, TPC, polymer content, viscosity, color, foaming of frying oils, and appearance of foods. Moreover, FFA, TPC, polymer content, foaming, and color showed significant positive correlations with each other (p < 0.05) in soybean oil intermittent frying processing.

15.
Environ Sci Pollut Res Int ; 31(3): 3707-3721, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091216

RESUMEN

Impervious surface area, due to its high energy storage and low permeability, hinders the cycles of material and energy between soil and atmosphere, thus affecting the sustainable supply of ecosystem services. It is of great practical significance to explore the influence of impervious surface areas on ecosystem services for territorial spatial planning and ecological construction projects. Correlation analysis and decoupling are used to explore the spatiotemporal variation and interaction between impervious surface areas and six ecosystem services in Hangzhou Bay from 1996 to 2018. The results show that different abundance levels of impervious surface areas are negatively correlated with ecosystem services, and with the increase of the impervious surface areas, the correlation coefficients with ecosystem services gradually decrease; there are mostly weak decoupling (79.2%) and strong decoupling (11.9%) between impervious surface areas and ecosystem services from 2007 to 2018, and the central areas that have achieved urbanization are mostly dominated by strong and weak decoupling, while the peripheral areas of the central cities are dominated by expansive recoupling and expansive connection. These results indicate that the loss of ecosystem services can be mitigated with the continuous advancement of urbanization and the enhancement of land use intensification. Finally, based on the aforementioned results, differentiated control suggestions are proposed, in order to provide insights for the sustainability of the urbanization of Hangzhou Bay and other cities with similar characteristics around the world.


Asunto(s)
Ecosistema , Urbanización , Ciudades , Suelo , Atmósfera , China , Conservación de los Recursos Naturales
17.
Biol Proced Online ; 25(1): 32, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041016

RESUMEN

BACKGROUND: Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS: Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS: Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS: This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.

18.
Clin Lab ; 69(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37948478

RESUMEN

BACKGROUND: Cryogenic freezing, often known as cryopreservation, is a technique for preserving human oocytes. METHODS: In this study, differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were identified using the human frozen oocyte dataset GSE69768 from the Gene Expression Database (GEO). Subsequently, combined with the microRNA atlas database, the miRNAs combined with differentially expressed lncRNAs (DElncRNAs) were predicted, and the lncRNA-miRNA-mRNA interaction relationship and competitive endogenous (ceRNA) regulatory network were obtained. RESULTS: The results revealed that multiple DElncRNAs and DEmRNAs were involved in the ceRNA network of the human oocyte. Finally, GO functional annotation and KEGG pathway enrichment analysis were performed on the differentially expressed mRNA (DEmRNA) in the ceRNA network, and the biological processes and pathways that may be related to the ceRNA network in frozen oocytes were explored. CONCLUSIONS: In conclusion, in the ceRNA network for human oocyte, lncRNA, mRNA, and miRNA do not each operate via a distinct, independent mechanism. Not only does the RNA-RNA contact involve the ceRNA regulatory mechanism, but it also involves interactions between proteins that are encoded by genes. Furthermore, the negative effects of inter-individual variations and instability on the quality of high-throughput detection cannot be completely ruled out due to the paucity of human oocyte data containing both mRNA and lncRNA expression profiles.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Oocitos/metabolismo
19.
Infect Dis Poverty ; 12(1): 82, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697423

RESUMEN

BACKGROUND: Blastocystis hominis (Bh) is zoonotic parasitic pathogen with a high prevalent globally, causing opportunistic infections and diarrhea disease. Human immunodeficiency virus (HIV) infection disrupts the immune system by depleting CD4+ T lymphocyte (CD4+ T) cell counts, thereby increasing Bh infection risk among persons living with HIV (PLWH). However, the precise association between Bh infection risk and HIV-related biological markers and treatment processes remains poorly understood. Hence, the purpose of the study was to explore the association between Bh infection risk and CD4+ T cell counts, HIV viral load (VL), and duration of interruption in antiviral therapy among PLWH. METHODS: A large-scale multi-center cross-sectional study was conducted in China from June 2020 to December 2022. The genetic presence of Bh in fecal samples was detected by real-time fluorescence quantitative polymerase chain reaction, the CD4+ T cell counts in venous blood was measured using flowcytometry, and the HIV VL in serum was quantified using fluorescence-based instruments. Restricted cubic spline (RCS) was applied to assess the non-linear association between Bh infection risk and CD4+ T cell counts, HIV VL, and duration of interruption in highly active antiretroviral therapy (HARRT). RESULTS: A total of 1245 PLWH were enrolled in the study, the average age of PLWH was 43 years [interquartile range (IQR): 33, 52], with 452 (36.3%) being female, 50.4% (n = 628) had no immunosuppression (CD4+ T cell counts > 500 cells/µl), and 78.1% (n = 972) achieved full virological suppression (HIV VL < 50 copies/ml). Approximately 10.5% (n = 131) of PLWH had interruption. The prevalence of Bh was found to be 4.9% [95% confidence interval (CI): 3.8-6.4%] among PLWH. Significant nonlinear associations were observed between the Bh infection risk and CD4+ T cell counts (Pfor nonlinearity < 0.001, L-shaped), HIV VL (Pfor nonlinearity < 0.001, inverted U-shaped), and duration of interruption in HARRT (Pfor nonlinearity < 0.001, inverted U-shaped). CONCLUSIONS: The study revealed that VL was a better predictor of Bh infection than CD4+ T cell counts. It is crucial to consider the simultaneous surveillance of HIV VL and CD4+ T cell counts in PLWH in the regions with high level of socioeconomic development. The integrated approach can offer more comprehensive and accurate understanding in the aspects of Bh infection and other opportunistic infections, the efficacy of therapeutic drugs, and the assessment of preventive and control strategies.


Asunto(s)
Infecciones por Blastocystis , VIH , Humanos , Femenino , Adulto , Masculino , Infecciones por Blastocystis/complicaciones , Infecciones por Blastocystis/epidemiología , Estudios Transversales , China/epidemiología , Terapia Antirretroviral Altamente Activa
20.
World J Gastroenterol ; 29(32): 4860-4872, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37701137

RESUMEN

BACKGROUND: Resistance to antibiotics is one the main factors constraining the treatment and control of Helicobacter pylori (H. pylori) infections. Therefore, there is an urgent need to develop new antimicrobial agents to replace antibiotics. Our previous study found that linolenic acid-metronidazole (Lla-Met) has a good antibacterial effect against H. pylori, both antibiotic-resistant and sensitive H. pylori. Also, H. pylori does not develop resistance to Lla-Met. Therefore, it could be used for preparing broad-spectrum antibacterial agents. However, since the antibacterial mechanism of Lla-Met is not well understood, we explored this phenomenon in the present study. AIM: To understand the antimicrobial effect of Lla-Met and how this could be applied in treating corresponding infections. METHODS: H. pylori cells were treated with the Lla-Met compound, and the effect of the compound on the cell morphology, cell membrane permeability, and oxidation of the bacteria cell was assessed. Meanwhile, the differently expressed genes in H. pylori in response to Lla-Met treatment were identified. RESULTS: Lla-Met treatment induced several changes in H. pylori cells, including roughening and swelling. In vivo experiments revealed that Lla-Met induced oxidation, DNA fragmentation, and phosphatidylserine ectropionation in H. pylori cells. Inhibiting Lla-Met with L-cysteine abrogated the above phenomena. Transcriptome analysis revealed that Lla-Met treatment up-regulated the expression of superoxide dismutase SodB and MdaB genes, both anti-oxidation-related genes. CONCLUSION: Lla-Met kills H. pylori mainly by inducing oxidative stress, DNA damage, phosphatidylserine ectropionation, and changes on cell morphology.


Asunto(s)
Helicobacter pylori , Metronidazol , Humanos , Ácido alfa-Linolénico/farmacología , Fosfatidilserinas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA