Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 312: 122743, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39111233

RESUMEN

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Animales , Nanopartículas/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Transferencia de Energía , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones Endogámicos BALB C , Luz , Ratones Desnudos , Óxido Nítrico/metabolismo
2.
Nat Commun ; 15(1): 7526, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214984

RESUMEN

Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.


Asunto(s)
Elastómeros , Fibrosis , Reacción a Cuerpo Extraño , Animales , Reacción a Cuerpo Extraño/inmunología , Ratones , Materiales Biocompatibles , Masculino , Ratones Endogámicos C57BL , Femenino , Insulina/metabolismo , Ratas , Inflamación/inmunología , Inflamación/metabolismo
3.
Acta Biomater ; 185: 226-239, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972625

RESUMEN

Polymeric elastomers are widely utilized in implantable biomedical devices. Nevertheless, the implantation of these elastomers can provoke a robust foreign body response (FBR), leading to the rejection of foreign implants and consequently reducing their effectiveness in vivo. Building effective anti-FBR coatings on those implants remains challenging. Herein, we introduce a coating-free elastomer with superior immunocompatibility. A super-hydrophilic anti-fouling zwitterionic layer can be generated in situ on the surface of the elastomer through a simple chemical trigger. This elastomer can repel the adsorption of proteins, as well as the adhesion of cells, platelets, and diverse microbes. The elastomer elicited negligible inflammatory responses after subcutaneous implantation in rodents for 2 weeks. No apparent fibrotic capsule formation was observed surrounding the elastomer after 6 months in rodents. Continuous subcutaneous insulin infusion (CSII) catheters constructed from the elastomer demonstrated prolonged longevity and performance compared to commercial catheters, indicating its great potential for enhancing and extending the performance of various implantable biomedical devices by effectively attenuating local immune responses. STATEMENT OF SIGNIFICANCE: The foreign body response remains a significant challenge for implants. Complicated coating procedures are usually needed to construct anti-fibrotic coatings on implantable elastomers. Herein, a coating-free elastomer with superior immunocompatibility was achieved using a zwitterionic monomer derivative. A pure zwitterionic layer can be generated on the elastomer surface through a simple chemical trigger. This elastomer significantly reduces protein adsorption, cell and bacterial adhesion, and platelet activation, leading to minimal fibrotic capsule formation even after six months of subcutaneous implantation in rodents. CSII catheters constructed from the PQCBE-H elastomer demonstrated prolonged longevity and performance compared to commercial catheters, highlighting the significant potential of PQCBE-H elastomers for enhancing and extending the performance of various implantable biomedical devices.


Asunto(s)
Elastómeros , Fibrosis , Reacción a Cuerpo Extraño , Elastómeros/química , Elastómeros/farmacología , Animales , Reacción a Cuerpo Extraño/patología , Ratones , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Prótesis e Implantes , Propiedades de Superficie , Ratas , Masculino , Ratas Sprague-Dawley , Catéteres
4.
Adv Healthc Mater ; 13(18): e2304478, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666550

RESUMEN

The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.


Asunto(s)
Materiales Biocompatibles , Reacción a Cuerpo Extraño , Hidrogeles , Reacción a Cuerpo Extraño/inmunología , Reacción a Cuerpo Extraño/prevención & control , Humanos , Materiales Biocompatibles/química , Hidrogeles/química , Animales , Prótesis e Implantes
5.
Adv Sci (Weinh) ; 11(16): e2308077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403462

RESUMEN

The foreign body response (FBR) to implanted biomaterials and biomedical devices can severely impede their functionality and even lead to failure. The discovery of effective anti-FBR materials remains a formidable challenge. Inspire by the enrichment of glutamic acid (E) and lysine (K) residues on human protein surfaces, a class of zwitterionic polypeptide (ZIP) hydrogels with alternating E and K sequences to mitigate the FBR is prepared. When subcutaneously implanted, the ZIP hydrogels caused minimal inflammation after 2 weeks and no obvious collagen capsulation after 6 months in mice. Importantly, these hydrogels effectively resisted the FBR in non-human primate models for at least 2 months. In addition, the enzymatic degradability of the gel can be controlled by adjusting the crosslinking degree or the optical isomerism of amino acid monomers. The long-term FBR resistance and controlled degradability of ZIP hydrogels open up new possibilities for a broad range of biomedical applications.


Asunto(s)
Reacción a Cuerpo Extraño , Hidrogeles , Animales , Hidrogeles/química , Ratones , Materiales Biocompatibles/química , Lisina/química , Primates , Roedores , Ácido Poliglutámico/química
6.
Bioact Mater ; 34: 482-493, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38292409

RESUMEN

Implantable biomaterials and biosensors are integral components of modern medical systems but often encounter hindrances due to the foreign body response (FBR). Herein, we report an albumin coating strategy aimed at addressing this challenge. Using a facile and scalable silane coupling strategy, human serum albumin (HSA) is covalently grafted to the surface of polydimethylsiloxane (PDMS) implants. This covalently grafted albumin coating remains stable and resistant to displacement by other proteins. Notably, the PDMS with covalently grafted HSA strongly resists the fibrotic capsule formation following a 180-day subcutaneous implantation in C57BL/6 mice. Furthermore, the albumin coating led to reduced recruitment of macrophages and triggered a mild immune activation pattern. Exploration of albumin coatings sourced from various mammalian species has shown that only HSA exhibited a promising anti-FBR effect. The albumin coating method reported here holds the potential to improve and extend the function of silicone-based implants by mitigating the host responses to subcutaneously implanted biomaterials.

7.
Biomater Sci ; 12(2): 468-478, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38086632

RESUMEN

Foreign body response (FBR) represents an immune-mediated cascade reaction capable of inducing the rejection of foreign implants, thereby compromising their in vivo performance. Pure zwitterionic hydrogels have demonstrated the ability to resist long-term FBR, owing to their outstanding antifouling capabilities. However, achieving such a robust anti-FBR effect necessitates stringent requirements concerning the purity of zwitterionic materials, which constrains their broader functional applications. Herein, we present a biocompatible, controllably degradable, and functionalizable zwitterion-albumin hybrid hydrogel. The zwitterionic hydrogel crosslinked with serum albumin exhibits controllable degradation and excels in preventing the adsorption of various proteins and adhesion of cells and bacteria. Moreover, the hydrogel significantly alleviates the host's FBR compared with PEG hydrogels and particularly outperforms PEG-based cross-linker crosslinked zwitterionic hydrogels in reducing collagen encapsulation when subcutaneously implanted into mice. The zwitterion-albumin hybrid hydrogel shows potential as a functionalizable anti-FBR material in the context of implantable materials and biomedical devices.


Asunto(s)
Reacción a Cuerpo Extraño , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Reacción a Cuerpo Extraño/prevención & control , Materiales Biocompatibles , Colágeno , Albúminas , Fibrosis
8.
Nat Biomed Eng ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057427

RESUMEN

Glucose-responsive formulations of insulin can increase its therapeutic index and reduce the burden of its administration. However, it has been difficult to develop single-dosage formulations that can release insulin in both a sustained and glucose-responsive manner. Here we report the development of a subcutaneously injected glucose-responsive formulation that nearly does not trigger the formation of a fibrous capsule and that leads to week-long normoglycaemia and negligible hypoglycaemia in mice and minipigs with type 1 diabetes. The formulation consists of gluconic acid-modified recombinant human insulin binding tightly to poly-L-lysine modified by 4-carboxy-3-fluorophenylboronic acid via glucose-responsive phenylboronic acid-diol complexation and electrostatic attraction. When the insulin complex is exposed to high glucose concentrations, the phenylboronic acid moieties of the polymers bind rapidly to glucose, breaking the complexation and reducing the polymers' positive charge density, which promotes the release of insulin. The therapeutic performance of this long-acting single-dose formulation supports its further evaluation and clinical translational studies.

9.
Chem Rev ; 122(23): 17073-17154, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36201481

RESUMEN

The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.


Asunto(s)
Materiales Biocompatibles , Polímeros , Adsorción , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...