Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
PLoS One ; 19(6): e0296623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843199

RESUMEN

The demographic structure is an important factor influencing the development of the services industry. As the country with the world's most serious aging problem, China's service industry structure is likely to undergo profound changes in response to the rapid demographic transition. Therefore, this paper examines the effect of population aging on the development of the service industry in the context of China's accelerating population aging. The study found that: (1) Population aging has a significant "inverted U" effect on the development of the services industry. (2) The impact of population aging on the development of the service industry has obvious regional and industry heterogeneity. The study of regional heterogeneity found that population aging in economically developed regions has a more obvious effect on the development of the service industry than in economically less developed regions. Industry heterogeneity studies found that population aging has an obvious promotional effect on the development of medical and other rigid demand industries, while the effect on other non-rigid demand industries is not significant. (3) The threshold effect test found that when the degree of population aging exceeds the threshold, the stimulating effect of population aging on the development of the services industry is no longer significant. The research in this paper provides useful insights into the likely response to changes in the industrial structure of the services industry, and offers some implications for countries with similar demographic profiles to China.


Asunto(s)
Dinámica Poblacional , China , Humanos , Dinámica Poblacional/tendencias , Desarrollo Industrial , Envejecimiento , Industrias
3.
J Affect Disord ; 356: 190-203, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604455

RESUMEN

BACKGROUND: Several lines of evidence point to an interaction between genetic predisposition and environmental factors in the onset of major depressive disorder (MDD). This study is aimed to investigate the pathogenesis of MDD by identifying key biomarkers, associated immune infiltration using bioinformatic analysis and human postmortem sample. METHODS: The Gene Expression Omnibus (GEO) database of GSE98793 was adopted to identify hub genes linked to endoplasmic reticulum (ER) stress-related genes (ERGs) in MDD. Another GEO database of GSE76826 was employed to validate the novel target associated with ERGs and immune infiltration in MDD. Moreover, human postmortem sample from MDD patients was utilized to confirm the differential expression analysis of hub genes. RESULTS: We discovered 12 ER stress-related differentially expressed genes (ERDEGs). A LASSO Cox regression analysis helped construct a diagnostic model for these ERDEGs, incorporating immune infiltration analysis revealed that three hub genes (ERLIN1, SEC61B, and USP13) show the significant and consistent expression differences between the two groups. Western blot analysis of postmortem brain samples indicated notably higher expression levels of ERLIN1 and SEC61B in the MDD group, with USP13 also tending to increase compared to control group. LIMITATIONS: The utilization of the MDD gene chip in this analysis was sourced from the GEO database, which possesses a restricted number of pertinent gene chip samples. CONCLUSIONS: These findings indicate that ERDEGs especially including ERLIN1, SEC61B, and USP13 associated the infiltration of immune cells may be potential diagnostic indicators for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Estrés del Retículo Endoplásmico , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/inmunología , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Biología Computacional , Masculino , Femenino , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621975

RESUMEN

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatopatías Alcohólicas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18 , Polvos , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Beclina-1 , FN-kappa B/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/genética
5.
Clin Exp Metastasis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568295

RESUMEN

Central lymph node metastasis (CLNM) of papillary thyroid carcinoma (PTC) is common. In our study, we built a nomogram to predict CLNM. We retrospectively analyzed 1,392 PTC patients. This group of patients was divided into a training cohort (including 1,009 patients) and a validation cohort (including 383 patients). Analyses of the correlation between inflammatory indicators, ultrasonic characteristics, pathological characteristics and CLNM were conducted. In the training cohort and validation cohort, the metastatic rates of CLNM were 60.16% and 64.23%, respectively. Univariate and multivariate logistic regression analyses demonstrated that Hashimoto's thyroiditis (HT), calcification, multifocality, capsule invasion, PLR (platelet-lymphocyte ratio) ≤ 130.34, large tumors and middle and lower positions were independent risk factors for CLNM. Then, we constructed a nomogram. The nomogram had good discrimination regardless of whether there was CLNM, with a C-index of 0.809. The calibration curve indicated that the nomogram had good visual and quantitative consistency (p = 0.213). Decision curve analysis showed that the nomogram improved the net clinical benefit with a threshold probability of 0-82% in the training cohort and 0-71% in the validation cohort. We constructed a nomogram to predict CLNM in PTC and assist surgeons in making personalized clinical decisions for PTC.

6.
Micromachines (Basel) ; 15(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675342

RESUMEN

The integration of advanced sensor technologies has significantly propelled the dynamic development of robotics, thus inaugurating a new era in automation and artificial intelligence. Given the rapid advancements in robotics technology, its core area-robot control technology-has attracted increasing attention. Notably, sensors and sensor fusion technologies, which are considered essential for enhancing robot control technologies, have been widely and successfully applied in the field of robotics. Therefore, the integration of sensors and sensor fusion techniques with robot control technologies, which enables adaptation to various tasks in new situations, is emerging as a promising approach. This review seeks to delineate how sensors and sensor fusion technologies are combined with robot control technologies. It presents nine types of sensors used in robot control, discusses representative control methods, and summarizes their applications across various domains. Finally, this survey discusses existing challenges and potential future directions.

7.
Pathogens ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38668242

RESUMEN

Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this study, we observed a positive correlation between total bilirubin levels and the levels of ALT, AST, LN, and CIV in patients with advanced schistosomiasis. Additionally, we established mouse models at different time points following S. japonicum infection. As the infection time increased, liver fibrosis escalated, while liver UGT1A1 consistently exhibited a low expression, indicating impaired glucuronidation of bilirubin metabolism in mice. In vitro experiments suggested that SEA may be a key inhibitor of hepatic UGT1A1 expression after schistosome infection. Furthermore, a high concentration of bilirubin activated the NF-κB signaling pathway in L-O2 cells in vitro. These findings suggested that the dysregulated glucuronidation of bilirubin caused by S. japonicum infection may play a significant role in schistosomiasis liver fibrosis through the NF-κB signaling pathway.

8.
Aging (Albany NY) ; 16(7): 6147-6162, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507458

RESUMEN

The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κß, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.


Asunto(s)
Ferroptosis , Hepatopatías Alcohólicas , Factor 2 Relacionado con NF-E2 , Polisacáridos , Animales , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Polisacáridos/farmacología , Ratas , Masculino , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Humanos , Ratas Sprague-Dawley , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Wolfiporia/química , Modelos Animales de Enfermedad
9.
ACS Nano ; 18(12): 8934-8951, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483284

RESUMEN

Spinal cord injury is a disease that causes severe damage to the central nervous system. Currently, there is no cure for spinal cord injury. Azithromycin is commonly used as an antibiotic, but it can also exert anti-inflammatory effects by down-regulating M1-type macrophage genes and up-regulating M2-type macrophage genes, which may make it effective for treating spinal cord injury. Bone mesenchymal stem cells possess tissue regenerative capabilities that may help promote the repair of the injured spinal cord. In this study, our objective was to explore the potential of promoting repair in the injured spinal cord by delivering bone mesenchymal stem cells that had internalized nanoparticles preloaded with azithromycin. To achieve this objective, we formulated azithromycin into nanoparticles along with a trans-activating transcriptional activator, which should enhance nanoparticle uptake by bone mesenchymal stem cells. These stem cells were then incorporated into an injectable hydrogel. The therapeutic effects of this formulation were analyzed in vitro using a mouse microglial cell line and a human neuroblastoma cell line, as well as in vivo using a rat model of spinal cord injury. The results showed that the formulation exhibited anti-inflammatory and neuroprotective effects in vitro as well as therapeutic effects in vivo. These results highlight the potential of a hydrogel containing bone mesenchymal stem cells preloaded with azithromycin and trans-activating transcriptional activator to mitigate spinal cord injury and promote tissue repair.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Ratas , Humanos , Animales , Hidrogeles/farmacología , Azitromicina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal , Antiinflamatorios/farmacología
10.
Adv Healthc Mater ; : e2304261, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482944

RESUMEN

Defects in autophagy contribute to neurological deficits and motor dysfunction after spinal cord injury. Here a nanosystem is developed to deliver autophagy-promoting, anti-inflammatory drugs to nerve cells in the injured spinal cord. Celastrol, metformin, and everolimus as the mTOR inhibitor are combined into the zein-based nanoparticles, aiming to solubilize the drugs and prolong their circulation. The nanoparticles are internalized by BV2 microglia and SH-SY5Y neuron-like cells in culture; they inhibit the secretion of inflammatory factors by BV2 cells after insult with lipopolysaccharide, and they protect SH-SY5Y cells from the toxicity of H2O2. In a rat model of spinal cord injury, the nanoparticles mitigate inflammation and promote spinal cord repair. In the in vitro and in vivo experiments, the complete nanoparticles function better than the free drugs or nanoparticles containing only one or two drugs. These results suggest that the triple-drug nanoparticles show promise for treating spinal cord injury.

11.
Acta Biomater ; 179: 256-271, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484831

RESUMEN

In rheumatoid arthritis (RA), macrophages infiltrate joints, while fibroblast-like synovial cells proliferate abnormally, forming a barrier against drug delivery, which hinders effective drug delivery to joint focus. Here we firstly designed a pH-responsive size-adjustable nanoparticle, composed by methotrexate (MTX)-human serum albumin (HSA) complex coating with pH-responsive liposome (Lipo/MTX-HSA) for delivering drugs specifically to inflamed joints in acidic environments. We showed in vitro that the nanoparticles can induce mitochondrial dysfunction, promote apoptosis of fibroblast-like synoviocytes and macrophages, further reduce the secretion of inflammatory factors (TNF-α, IL-1ß, MMP-9), and regulate the inflammatory microenvironment. We also demonstrated similar effects in a rat model of arthritis, in which Lipo/MTX-HSA accumulated in arthritic joints, and at low pH, liposome phospholipid bilayer cleavage released small-sized MTX-HSA, which effectively reduced the number of fibroblast-synoviocytes and macrophages in joints, alleviated joint inflammation, and repaired bone erosion. These findings suggest that microenvironment-responsive size-adjustable nanoparticles show promise as a treatment against rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Abnormal proliferation of fibroblast synoviocytes poses a physical barrier to effective nanoparticle delivery. We designed size-adjustable nano-delivery systems by preparing liposomes with cholesterol hemisuccinate (CHEM), which were subsequently loaded with small-sized albumin nanoparticles encapsulating the cytotoxic drug MTX (MTX-HSA), termed Lipo/MTX-HSA. Upon tail vein injection, Lipo/MTX-HSA could be aggregated at the site of inflammation via the ELVIS effect in the inflamed joint microenvironment. Specifically, intracellular acidic pH-triggered dissociation of liposomes promoted the release of MTX-HSA, which was further targeted to fibroblasts or across fibroblasts to macrophages to exert anti-inflammatory effects. The results showed that liposomes with adjustable particle size achieved efficient drug delivery, penetration and retention in joint sites; the strategy exerted significant anti-inflammatory effects in the treatment of rheumatoid arthritis by inducing mitochondrial dysfunction to promote apoptosis in fibrosynoviocytes and macrophages.


Asunto(s)
Apoptosis , Artritis Reumatoide , Fibroblastos , Liposomas , Macrófagos , Metotrexato , Liposomas/química , Artritis Reumatoide/patología , Artritis Reumatoide/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/metabolismo , Animales , Concentración de Iones de Hidrógeno , Metotrexato/farmacología , Metotrexato/química , Apoptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Humanos , Ratas , Ratas Sprague-Dawley , Ratones , Tamaño de la Partícula , Masculino , Sinoviocitos/efectos de los fármacos , Sinoviocitos/patología , Sinoviocitos/metabolismo , Células RAW 264.7 , Albúmina Sérica Humana/química , Albúmina Sérica Humana/farmacología , Nanopartículas/química
12.
Sci Rep ; 14(1): 4446, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395998

RESUMEN

To assess the ameliorative effect of ursodeoxycholic acid (UDCA) on hydrogen peroxide (H2O2)-induced hepatocyte injury. In our in vivo experiments, we modelled hyperlipidemia in ApoE-/- mice subjected to a 3-month high-fat diet and found that HE staining of the liver showed severe liver injury and excessive H2O2 was detected in the serum. We modelled oxidative stress injury in L02 cells by H2O2 in vitro and analyzed the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and related genes. UDCA significantly improved the level of oxidative stress in H2O2-injured L02 cells (P < 0.05). In addition, UDCA improved the transcription levels of inflammation and oxidative stress-related genes (P < 0.05), showing anti-inflammatory and anti-oxidative stress effects. UDCA has a protective effect on H2O2-damaged L02 cells, which lays a theoretical foundation for its application development.


Asunto(s)
Peróxido de Hidrógeno , Ácido Ursodesoxicólico , Ratones , Animales , Peróxido de Hidrógeno/farmacología , Ácido Ursodesoxicólico/farmacología , Estrés Oxidativo , Hepatocitos/metabolismo , Especies Reactivas de Oxígeno/farmacología , Superóxido Dismutasa/metabolismo , Apoptosis
13.
J Vis Exp ; (203)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38314770

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by the infiltration of immune cells and demyelination in the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic animal model for studying MS. In this study, we aimed to investigate the role of CD4 T cells in the initiation and relapse of EAE, focusing on the activation phase and immune response. To create the EAE mice model, female mice were immunized with myelin oligodendrocyte glycoprotein (MOG)35-55 emulsified with complete Freund's adjuvant (CFA). Clinical scores were assessed daily, and results demonstrated that mice in the EAE group exhibited a classic relapsing-remitting pattern. Hematoxylin-eosin (H&E) and luxol fast blue (LFB) staining analysis revealed significant infiltration of inflammatory cells in the CNS and demyelination in EAE mice. Regarding the activation phase, both CD4+CD69+ effector T (Teff) cells and CD4+CD44+CD62L- effector memory T (Tem) cells may contribute to the initiation of EAE, however, the relapse stage was probably dominated by CD4+CD44+CD62L- Tem cells. Additionally, in terms of immune function, helper T (Th)1 cells are primarily involved in initiating the EAE. However, both Th1 and Th17 cells contribute to the relapse stage, and the immunosuppressive function of regulatory T (Treg) cells was inhibited during the EAE pathological process.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Femenino , Animales , Ratones , Linfocitos T CD4-Positivos , Sistema Nervioso Central/patología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito , Recurrencia , Ratones Endogámicos C57BL
14.
ACS Appl Mater Interfaces ; 16(6): 6689-6708, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38302434

RESUMEN

Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.


Asunto(s)
Reprogramación Metabólica , Neoplasias , Humanos , Glucólisis , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Metabolismo de los Lípidos , Microambiente Tumoral
15.
Adv Healthc Mater ; 13(12): e2304156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271691

RESUMEN

Despite considerable interest in medical and pharmaceutical fields, there remains a notable absence of functional textiles that concurrently exhibit antibacterial and antioxidant properties. Herein, a new composite fabric constructed using nanostructured bacterial cellulose (BC) covalently-linked with cerium oxide nanoparticles (BC@CeO2NPs) is introduced. The synthesis of CeO2NPs on the BC is performed via a microwave-assisted, in situ chemical deposition technique, resulting in the formation of mixed valence Ce3+/Ce4+ CeO2NPs. This approach ensures the durability of the composite fabric subjected to multiple washing cycles. The Reactive oxygen species (ROS) scavenging activity of CeO2NPs and their rapid and efficient eradication of >99% model microbes, such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus remain unaltered in the composite. To demonstrate the feasibility of incorporating the fabric in marketable products, antimicrobial face masks are fabricated with filter layers made of BC@CeO2NPs cross-linked with propylene or cotton fibers. These masks exhibit complete inhibition of bacterial growth in the three bacterial strains, improved breathability compared to respirator masks and enhanced filtration efficiency compared to single-use surgical face masks. This study provides valuable insights into the development of functional BC@CeO2NPs biotextiles in which design can be extended to the fabrication of medical dressings and cosmetic products with combined antibiotic, antioxidant and anti-inflammatory activities.


Asunto(s)
Antibacterianos , Antioxidantes , Celulosa , Cerio , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , Celulosa/química , Cerio/química , Cerio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Máscaras , Textiles , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Pruebas de Sensibilidad Microbiana
16.
Mol Cell Endocrinol ; 583: 112145, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184154

RESUMEN

Hypothyroidism is associated with elevated levels of serum thyrotropin (TSH), which have been shown to promote abnormal proliferation of vascular smooth muscle cells and contribute to the development of atherosclerosis. However, the specific mechanisms underlying the TSH-induced abnormal proliferation of vascular smooth muscle cells remain unclear. The objective of this study was to investigate the role of TSH in the progression of atherosclerosis. Our research findings revealed that hypothyroidism can trigger early atherosclerotic changes in the aorta of Wistar rats. In alignment with our in vitro experiments, we observed that TSH induces abnormal proliferation of aortic smooth muscle cells by modulating the expression of α and ß1 subunits of large conductance Ca2+-activated K+ (BKCa) channels within these cells via the cAMP/PKA signaling pathway. These results collectively indicate that TSH acts through the cAMP/PKA signaling pathway to upregulate the expression of α and ß1 subunits of BKCa channels, thereby promoting abnormal proliferation of arterial smooth muscle cells. These findings may provide a basis for the clinical prevention and treatment of atherosclerosis caused by elevated TSH levels.


Asunto(s)
Aterosclerosis , Hipotiroidismo , Ratas , Animales , Músculo Liso Vascular/metabolismo , Ratas Wistar , Tirotropina/farmacología , Tirotropina/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipotiroidismo/metabolismo , Aterosclerosis/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo
18.
Front Mol Biosci ; 10: 1278976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908226

RESUMEN

Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements. Although traditional NUP functions have been extensively researched, evidence of additional vital non-NPC roles, referred to herein as non-classical NUP functions, is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93 or Nup205 knockdown results in cilia loss, impacting cardiac left-right patterning in models and cell lines. Genetic variants of Nup205 and Nup188 have been identified in patients with congenital heart disease and situs inversus totalis or heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP functions to human diseases. This mini-review summarises pivotal NUP interactions with NIMA-related kinases or nephronophthisis proteins that regulate ciliary function and explores other NUPs potentially implicated in cilia-related disorders. Overall, elucidating the non-classical roles of NUPs will enhance comprehension of ciliopathy aetiology.

19.
Oncol Lett ; 26(6): 528, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020295

RESUMEN

Metastasis of clear cell renal cell carcinoma (ccRCC) to the thyroid gland is rare, and simultaneous occurrence of ccRCC and papillary thyroid carcinoma (PTC) is even rarer. Due to the occult nature of the disease, the clinical diagnosis is difficult. In the case of multiple tumors, the possibility of thyroid metastasis should not be ignored during the clinical diagnosis and treatment of PTC. The present study reported a case with initial diagnosis of PTC and accidental discovery of thyroid metastasis of ccRCC. This case study aims to improve the understanding of occult thyroid metastasis, providing a reference for its clinical diagnosis and treatment. Accordingly, misdiagnosis and missed diagnosis of this disease may be reduced and the survival rate and the life quality of patients can be improved.

20.
Mol Psychiatry ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957291

RESUMEN

The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA