Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Neural Regen Res ; 19(10): 2281-2289, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488562

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00029/figure1/v/2024-02-06T055622Z/r/image-tiff Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and Alzheimer's disease model mice. However, the effects of magnesium-L-threonate on the gut microbiota in Alzheimer's disease remain unknown. Previously, we reported that magnesium-L-threonate treatment improved cognition and reduced oxidative stress and inflammation in a double-transgenic line of Alzheimer's disease model mice expressing the amyloid-ß precursor protein and mutant human presenilin 1 (APP/PS1). Here, we performed 16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry to analyze changes in the microbiome and serum metabolome following magnesium-L-threonate exposure in a similar mouse model. Magnesium-L-threonate modulated the abundance of three genera in the gut microbiota, decreasing Allobaculum and increasing Bifidobacterium and Turicibacter. We also found that differential metabolites in the magnesium-L-threonate-regulated serum were enriched in various pathways associated with neurodegenerative diseases. The western blotting detection on intestinal tight junction proteins (zona occludens 1, occludin, and claudin-5) showed that magnesium-L-threonate repaired the intestinal barrier dysfunction of APP/PS1 mice. These findings suggest that magnesium-L-threonate may reduce the clinical manifestations of Alzheimer's disease through the microbiota-gut-brain axis in model mice, providing an experimental basis for the clinical treatment of Alzheimer's disease.

2.
Langmuir ; 40(3): 1761-1773, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207108

RESUMEN

Wet film leveling can greatly promote film uniformity. However, in the field of metal nanowire, wet film leveling is rarely mentioned. For low-viscosity inks like metal nanowire ink, how to realize wet film leveling is still unclear. Herein, we study the wet film leveling of silver nanowire ink and systematically investigate the relationship between leveling effect and influence factors: (1) there is a uniformity-promotion limit for traditional methods, while wet film leveling can break through this limit and further promote the film uniformity; (2) for wet film leveling, lowering ink's surface tension has no effect, and eliminating surface tension gradient by high-surface-tension leveling agent is the main task; (3) leveling process includes wet film destruction process and ink reflow process; (4) in the destruction process, the leveling-agent solubility and quantity dominate the leveling effect, while the influence of surface tension is little; (5) for solubility and quantity, there is a suitable range to realize optimum leveling effect, and the leveling effect exhibits a contrary relationship with the solubility in a suitable range (2-11%); (6) in the reflow process, the main influence factor is ink viscosity, and the leveling effect exhibits a contrary relationship with ink viscosity. After being leveled by 1.5% n-pentanol, the sheet resistance and sheet-resistance variation coefficient of film decrease from 38.3 Ω/sq/3.83% to 25.7 Ω/sq/1.88%. Further study reveals that the film improvement is not from the ink wettability and drying. Above theoretical results possess certain universality for film preparation by a wet process and can be used by the science and industry field.

3.
ACS Appl Mater Interfaces ; 16(2): 2964-2971, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38173093

RESUMEN

Chiral lead halide perovskites (LHPs) have been widely investigated in chiroptical spintronics due to their significant Rashba spin-orbit coupling (SOC) and chiral-induced spin selectivity (CISS). Ferromagnet/LHP spinterface stems from the orbital hybridization at the interface of the ferromagnet and the nonmagnetic semiconductor, where interfacial density of state is spin-dependent. By far, the impact of the ferromagnet/chiral LHP spinterface on magneto-photoluminescence (Magneto-PL) of chiral LHPs remains unknown. In this work, we find that the negative and tunable Magneto-PL effects for the pristine LHP bulk film can be drastically enhanced by incorporating ferromagnetic/chiral LHP interfaces. A large Magneto-PL magnitude can reach approximately -13% for the Ni/(S-MBA)2PbI4 interface at the field strengths of ±900 mT. With the assistance of circularly polarized PL spectra, anisotropic magneto-resistance, and X-ray photoelectron spectroscopy measurements, we demonstrate that the ferromagnet/chiral LHP interfaces are chirality/spin-dependent and possess ferromagnetic property due to distinct magnetic switching behavior and electronic orbit coupling at interfaces, which boost the Rashba splitting and spin mixing. The comprehensive effects of Rashba-induced exciton states and chiral-induced SOC at chiral spinterfaces with CISS are responsible for the enhanced Magneto-PL of Ni/(R/S-MBA)2PbI4. It is postulated that the chiral spinterfaces play a dominant role for achieving large and tunable magneto-optical effect of chiral LHPs. This work paves the way for chiroptical spintronic applications.

4.
Talanta ; 271: 125661, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219322

RESUMEN

For the diagnosis and treatment of cancer, a great challenge is the fabrication of straightforward, non-toxic, multifunctional green nanomaterials. In this study, carbon quantum dots self-assembled with indocyanine green dye at bovine serum albumin for phototherapy and in situ bioimaging are produced by a flexible hydrothermal method. We find that the synthesized nanoparticles have high tumor photothermal therapeutic activity when exposed to 808 nm light, with a photothermal conversion efficiency up to 61 %. The phototoxicity study revealed the excellent phototherapy of the nanoparticles mainly arises from photothermal therapeutic effect other than photodynamic therapy effect. Simultaneously, it allows biological imaging in the visible and near-infrared ranges because of the significant absorption at 365 nm and 840 nm. The current work offers a simple, environmentally friendly, and reasonable method for developing photothermal drugs with a high photothermal conversion efficiency in the near-infrared region, as well as good biosafety for multifunctional nanomaterials for bioimaging tumor diagnosis and direct phototherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Puntos Cuánticos , Humanos , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Verde de Indocianina
5.
Dalton Trans ; 53(2): 647-655, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38073593

RESUMEN

White light-emitting diode (WLEDs), acting as a new generation of solid-state lighting, play a critical role in energy conservation. Red-emitting phosphors with high efficiency could effectively improve the quality of WLED devices. In this report, Eu3+-doped Ca2ScTaO6 luminescent materials have been successfully synthesized by a high-temperature solid-state method. Its crystal structure was confirmed to be a monoclinic lead-free double-perovskite material system with the space group P21/n by the X-ray diffraction patterns. The strongest emission peak was about 614 nm distributed to the 5D0 → 7F2 electric-dipole transition. Additionally, the optimal doping concentration was found to be 40 mol%, and the concentration quenching mechanism is assigned to d-d interactions. The Ca2ScTaO6:Eu3+ phosphors exhibited an ultrahigh internal quantum yield (about 100%) with good thermal stability (81.5% at 423 K compared with the emission intensity at 303 K). Furthermore, a WLED with a suitable correlated color temperature (4201 K) and a color rendering index (87.62) was fabricated. The phosphor-based polydimethylsiloxane light-emitting flexible film exhibited good luminescence, which is suitable to be utilized in flexible displays. The obtained results suggest that the high-efficiency red-emitting Ca2ScTaO6:Eu3+ phosphors are promising commercial candidates for use in near-ultraviolet-excited WLEDs.

6.
Dalton Trans ; 53(1): 285-291, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38047478

RESUMEN

Thermal imaging materials with high sensitivity and the ability to reflect real-time temperature play an important role in research areas such as biotechnology and electronic engineering. However, the temperature sensitivity and temporal resolution of the current materials are not suitable for the complicated detection situation. In this paper, we introduce a thermal imaging material - SrB4O7:5%Sm2+ - with high temperature sensitivity. Furthermore, by applying a time resolving technique based on an intensified charge-coupled device, the sensitivity and temporal resolution are greatly promoted. The good temperature sensitivity (9.67% K-1 at 533 K), the high spatial resolution (2.7 µm) and the fast detection time (<1 s) suggest its considerable potential for real-time thermal imaging applications. The results of temperature distribution on a printed circuit board show that the as-prepared material will be greatly beneficial for thermal imaging applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38050907

RESUMEN

The development of electrochromic (EC) displays has been in the challenge of displaying precise patterns, such as characters or high-resolution images of small size. High-performance EC materials as well as efficient, precise-display strategies are still urgent. To enable a microfactor-guided strategy for highly precise display, I3-/I- ion-migration-induced localized electrochromism is developed in an EC device based on the C-rich polymeric carbon nitride (CPCN). The CPCN material with an extended conjugated backbone of individual aromatic nuclei and heptazine rings has been reported possessing remarkable photorechargeable performance. Owing to the self-charging behavior, the CPCN exhibits color switching by the interfacial charge recombination with I3- ions in electrolyte and serves as the EC material with a coloration efficiency of 210.2 cm2 C-1 and an optical contrast of 48.6%. Material synthesis, electrode preparation, device design and fabrication, mechanism analysis, and performance evaluation of the CPCN-based EC display device are described.

8.
Dalton Trans ; 52(43): 15798-15806, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37812449

RESUMEN

Color tunable phosphors of Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 (SGLT) were synthesized in this work. The crystal parameters and photoluminescence performances were investigated in detail. By taking advantage of the different thermal quenching strengths between Mn4+ and Tb3+ ions, the emission color of SGLT:0.7%Mn4+/1%Tb3+ changed from red to green, which could be used for high-temperature temperature warning indication. Moreover, according to the luminescence intensity ratio (LIR) technique, wide temperature-range optical thermometry was developed and further, the maximum relative sensitivity (SR1) value of the SGLT:0.7%Mn4+/5%Tb3+ phosphor was determined to be 1.49% K-1 at 560 K. On the other hand, the sensing properties were also analyzed based on the temperature-dependent lifetime method. The most interesting thing is that the maximum SR2 value reached 1.88% K-1 at 573 K. This work proved that the Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 could be potentially used in temperature warning indication and high sensitivity luminescence thermometry.

9.
Phys Chem Chem Phys ; 25(41): 28510-28516, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37847129

RESUMEN

2D transition metal dichalcogenides (TMDs) demonstrate significant promise in logic circuits and optoelectronic devices because of their unique structures and excellent semiconductor properties. However, they inevitably undergo out-of-plane deformation during practical applications due to their ultra-thin structures. Recent experiments have shown that out-of-plane deformation significantly affects the electronic structures of 2D TMDs. However, the underlying physical mechanism is largely unknown. Therefore, it is critical to have a deeper understanding of out-of-plane deformation in 2D TMDs to optimize their applications in different fields. Currently, one of the most pressing matters that requires clarification is the chirality dependence of out-of-plane deformation in tuning the electromechanical properties of 2D TMDs. In this work, using single-layer MoS2 as a probe, we systematically investigate the effects of out-of-plane deformation along different chirality directions on the bond length, bending stiffness, electric polarization, and band structure of 2D TMDs by employing first-principles calculations based on density functional theory. Our results indicate that the bond length, bending energy, polarization strength, and band gap size of single-layer MoS2 are isotropic under out-of-plane deformation, while the band gap type is closely related to the direction of deformation. Our study will provide an essential theoretical basis for further revealing the structure-performance relationship of 2D TMDs.

10.
Neurochem Int ; 171: 105625, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37774797

RESUMEN

Vascular dementia (VD) is the second most common cause of dementia after Alzheimer's disease. Neuroinflammation contributes to pathogenesis of VD. Neurotropin (NTP) is an analgesic that has been shown to suppress inflammation and neural repair. But its effects on VD are still unclear. Therefore, this study aimed to investigate the therapeutic effects and potential mechanisms of NTP in the VD model mice established by bilateral common carotid artery stenosis method. In VD mice, we found that NTP treatment increased cerebral blood flow by Laser speckle imaging, reduced neuron loss by Nissl, HE and immunochemistry staining, attenuated white matter damage by magnetic resonance imaging and ultrastructural damage by transmission electron microscope, improved cognitive functions by new object recognition test and three-chamber test, Y maze test and Morris water maze test, inhibited significantly glial activation by immunofluorescence methods, reduced the expression of TLR4, down-regulated expression of MyD88 and phosphorylation of NF-κB P65, decreased the levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNFα. Further, we showed that administration of a TLR4 inhibitor TAK242 had a similar effect to NTP, while the TLR4 agonist CRX-527 attenuated the effect of NTP in the VD mice. Collectively, our study suggested that NTP alleviates cognitive impairment by inhibiting TLR4/MyD88/NF-κB inflammation signaling pathway in the VD mice. Thus, NTP may be a promising therapeutic approach and a potential TLR4 inhibitor for VD.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Ratones , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Receptor Toll-Like 4/metabolismo , Demencia Vascular/tratamiento farmacológico , Transducción de Señal , Inflamación/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
11.
Chem Commun (Camb) ; 59(79): 11791-11794, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37681416

RESUMEN

Fe2O3 microspheres with a unique structure were reported for the first time in this article and showed excellent cycling stability as a negative electrode for supercapacitors. A high areal specific capacitance of 1465.26 mF cm-2 was also achieved in sulfur-doped Fe2O3. An asymmetric supercapacitor was assembled demonstrating its potential for practical use.

12.
Ann Indian Acad Neurol ; 26(3): 235-240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538410

RESUMEN

Objective: This study was to investigate the therapeutic effect of high-frequency repetitive magnetic stimulation (HF-rMS) at the sacrum for chronic constipation in Parkinson's patients (PD). Materials and Methods: Eventually 48 PD patients were enrolled from July 2019 to October 2020, and randomly divided into the HF-rMS group (the intervention group, n = 24) and the sham HF-rMS group (the control group, n = 24). The intervention group received HF-rMS at the sacrum, whereas the control group received ineffective magnetic stimulation. We performed clinical evaluation before and after HF-rMS treatment, including constipation score scale (KESS questionnaire), Unified Parkinson's Disease Rating Scale (UPDRS-III exercise examination), Hoehn-Yahr (H-Y) stage of motor function; simple mental status scale (MMSE), anxiety/depression table (HAD-A/HAD-D), the activity of daily living (ADL), and quality of life scale for patients with constipation (PAC-QOL) to evaluate symptoms and satisfaction of PD patients with chronic constipation. Results: There was no significant difference in the clinical characteristics between the two groups. As compared to the control group, the HF-rMS group displayed a larger change (pre and posttreatment) in the KESS scores of PD patients with chronic constipation, suggesting a significant improvement. Moreover, HF-rMS significantly promoted the mood, activity of daily living, and quality of life of PD patients when comparing the alteration of HAD-A/HAD-D scores, ADL scores, and PAC-QOL scores between the two groups. Finally, there was no significant difference in the change of the UPDRS III score and the MMSE score between the two groups. Conclusion: HF-rMS at the sacrum can improve chronic constipation in PD patients.

13.
Dalton Trans ; 52(31): 10708-10717, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489519

RESUMEN

Nickel-cobalt Prussian blue analogues (Ni-Co PBAs) suffer from structural instability in neural and alkaline electrolytes due to the dissolution of metal cations and cyanide anions caused by external H2O attack, resulting in capacity degradation and restricted life span. Herein, in this work, Ni-Co PBA quantum dots embedded in N-doped carbon (CC-Ni-Co PBA) were synthesized via a facile coprecipitation method and in situ polymerization followed by calcination under a nitrogen atmosphere. The obtained electrode provided a high specific capacity of 333.7 C g-1 and still retained 188.8 C g-1 when the current density increased by 40 times. Remarkably, it exhibited outstanding cycling stability with 82% retention of capacity after 10 000 cycles in an aqueous alkaline electrolyte, which benefited from the inner Ni-Co PBA quantum dots that provided a surrounding space and significantly accommodated the volume change during the repeated charge-discharge process, and the outer carbon layer that served as a protective barrier to hinder the Ni-Co PBA from dissolving into the electrolyte, thus realizing the durability of the electrode. Furthermore, an asymmetric alkaline battery device was assembled which achieved a maximum energy density of 33.2 W h kg-1 and a power density of 3.1 kW kg-1. Our work contributed to the development of PBA-based electrode materials with improved cycling stability as battery-type electrodes in aqueous electrolytes.

14.
J Mol Neurosci ; 73(4-5): 316-326, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37133759

RESUMEN

It is shown that great progress was recently made in the treatment of repetitive transcranial magnetic stimulation (rTMS) for neurological and psychiatric diseases. This study aimed to address how rTMS exerted it therapeutic effects by regulating competitive endogenous RNAs (ceRNAs) of lncRNA-miRNA-mRNA. The distinction of lncRNA, miRNA and mRNA expression in male status epilepticus (SE) mice treated by two different ways, low-frequency rTMS (LF-rTMS) vs. sham rTMS, was analyzed by high-throughput sequencing. The Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. Gene-Gene Cross Linkage Network was established; pivotal genes were screened out. qRT-PCR was used to verify gene-gene interactions. Our results showed that there were 1615 lncRNAs, 510 mRNAs, and 17 miRNAs differentially which were expressed between the LF-rTMS group and the sham rTMS group. The expression difference of these lncRNAs, mRNAs, and miRNAs by microarray detection were consistent with the results by qPCR. GO functional enrichment showed that immune-associated molecular mechanisms, biological processes, and GABA-A receptor activity played a role in SE mice treated with LF-rTMS. KEGG pathway enrichment analysis revealed that differentially expressed genes were correlated to T cell receptor signaling pathway, primary immune deficiency and Th17 cell differentiation signaling pathway. Gene-gene cross linkage network was established on the basis of Pearson's correlation coefficient and miRNA. In conclusion, LF-rTMS alleviates SE through regulating the GABA-A receptor activity transmission, improving immune functions, and biological processes, suggesting the underlying ceRNA molecular mechanisms of LF-rTMS treatment for epilepsy.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Estado Epiléptico , Masculino , Ratones , Animales , Transcriptoma , ARN Largo no Codificante/genética , Estimulación Magnética Transcraneal , Receptores de GABA-A/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes , Estado Epiléptico/genética , Estado Epiléptico/terapia
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122773, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37244025

RESUMEN

Light-emitting perovskite quantum dots (PeQDs) are extensively investigated owing to their evident merits. However, it is still a challenge to adjust their intrinsic emissions and enhance their thermal stability to achieve full-color highly emissive QD-based light-emitting diodes (QLEDs), especially blue QLEDs. Herein, we demonstrate an effective strategy to fundamentally stabilize the crystal structure of CsPbBr3 QDs by codoping Na+ and Cu2+ ions, which are designed to substitute Cs+ (A sites) and Pb2+ (B sites), respectively. It is found out that the codoping metal ions have significantly improved the thermal stability and the optical properties of the QDs. 40% of the emission intensity can be remained after 8 thermal cycles (20-120 °C) for CsPbBr3: Na+/Cu2+ QDs, whilst less than 10% is maintained for undoped CsPbBr3 QDs. Accordingly, stable blue QLEDs are packed by CsPbBr3: Na+/Cu2+ QDs. Strong electroluminescence with the maximum luminance of 7161 cd m-2 and low turn-on voltage of 2.4 V are realized. The CIE coordinates are tuned from green (0.10, 0.74) to blue (0.17, 0.25) via Na+ and Cu2+ codoping. The maximum external quantum efficiency (EQEmax) is obtained as 4.52% for PeLEDs based on codoped QDs. The proposed metal ions A and B sites dual substitution strategy guarantees PeQDs as an extremely promising prospect in potential applications as high-resolution displays and high-quality lightings.


Asunto(s)
Puntos Cuánticos , Excipientes , Iones , Óxidos
16.
J Chem Phys ; 158(8): 084702, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859079

RESUMEN

Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene's lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future.

17.
CNS Neurosci Ther ; 29(1): 471-482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36419341

RESUMEN

PURPOSE: This study was to explore whether Ginkgo biloba extract (GBE) improve memory impairment by alleviating neuroinflammation signaling in mice with status epilepticus. METHODS: The status epilepticus (SE) mice model was established by pilocarpine and treated with 100 mg / kg of GBE for 14 days. Spontaneous alternation of Y-maze and new object recognition were used to explore memory impairment. To examine glial cell activation, we performed immunohistochemistry and immunofluorescence staining. The activation of NF-κB signaling and the expression level of lncRNA-COX2 were detected by Western blot and qRT-PCR, respectively. Adeno-associated virus lncRNA-COX2 was injected into mice for overexpression of lncRNA-COX2. RESULTS: After GBE treatment, the spontaneous alternation rate and the recognition coefficient in SE mice were both increased. Moreover, activation of glial cells, NF-κB signaling and lncRNA-COX2 were significantly decreased in SE mice. In the GBE-treated SE mice with lncRNA-COX2 overexpression, NF-κB signaling was up-regulated again; the reduced level of inflammation factors was reversed; the GBE-rescued spontaneous alternation rate of Y-maze was eliminated. CONCLUSION: Our results suggested that GBE reduces the hippocampal inflammation by down-regulating lncRNA-COX2 / NF-κB signaling in the SE mice, leading to the decrease of neuronal damage and the improvement of memory functions.


Asunto(s)
ARN Largo no Codificante , Estado Epiléptico , Ratones , Animales , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , Ciclooxigenasa 2 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
18.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232942

RESUMEN

The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni1Co2S4 and Ni2Co1Al LDH exhibit an outstanding alkali stability, and Ni2Co1S4 exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni2Co1S4. Ni2Co1S4 showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni1Co2S4, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties.


Asunto(s)
Álcalis , Hidróxidos , Cobalto/química , Hidróxidos/química , Sulfuros
19.
Dalton Trans ; 51(45): 17224-17234, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36314641

RESUMEN

Because of thermal quenching, conventional luminescent materials suffer from severe problems when employed at high temperatures. Based on the thermally coupled energy levels (TCLs) of rare-earth ions, we report and explain an abnormal thermal quenching phenomenon in the excited state of the charge transfer band (CTB), which is expected to bring out a solution to the problems of the low sensitivity of temperature-sensing materials and applications at high temperature. Temperature-dependent excitation spectra of Er3+ or Eu3+-doped CaMoO4, CaWO4, and LuVO4 phosphors are recorded. It was found that CTB exhibited two abnormal thermal quenching phenomena. One is that the intensity of the whole CTB increases with the rising temperature, named totally abnormal thermal quenching (TATQ), and the other is the integrated intensity decrease but the edge of the CTB at longer wavelengths enhanced with temperature, named edge abnormal thermal quenching (EATQ). The temperature-dependent excitation and diffuse reflectance spectra of the host and rare earth ions with moderate (Er3+) and large (Eu3+) energy separation between TCLs are investigated. One photodynamic model, considering influential factors, such as the absorption of the phosphor, energy transfer efficiency between CTB and dopants, and thermal coupling effect, is proposed and explains the unusual thermal response of CTB. Luminescence thermometry based on the abnormal thermal quenching is realized with the obtained relative sensitivity Sr of 4.65% K-1 @ 328 K, which is four times the value derived from the classic TCLs in the same phosphor.

20.
Brain Behav ; 12(7): e2637, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35678015

RESUMEN

INTRODUCTION: Schizophrenia's heritability and familial transmission have been known for several decades. The male-specific Y chromosome plays an important role in schizophrenia. Short tandem repeats (STRs)have been recognized as risk genes in the development of schizophrenia. Here, we investigated the association between male schizophrenia and Y-chromosomal STRs loci. METHODS: We recruited 355 patients with schizophrenia and 473 healthy males for physical examination and amplified them with a PowerPlex 21 System fluorescence-labeled composite amplification System. Then, the resultant products were separated by electrophoresis and further detected. Finally, differences in allele and genotype frequency distributions of STR loci were observed. RESULTS: Our results showed that all 20 STR loci were in accordance with Hardy-Weinberg's law (p > .05). There were statistically significant differences in alleles of D13S317 and D5S818 loci and genotype frequency distribution between the two groups (alleles: p = .039, p = .022, respectively; genotype: p = .0004, p = .011, respectively). However, there was no difference in the other autosomal 18 STR loci between the two groups (p > .05). Univariate analysis showed that the frequency distribution differences of allele 11 and genotype 10-11 at the D13S317 locus between the two groups were significant (compared to the controls, p = 0.005, odds ratio (OR) = 1.37, 95%b confidence interval (CI) = 1.10-1.71, compared to the controls, p = .0000002, OR = 3.92, 95% CI = 2.27-6.77, respectively). The frequency distribution differences of allele 7 and genotype 7-10 at D5S818 between the two groups were significant (compared to the controls, p = .0006, OR = 3.42, 95% CI = 1.63-7.16, compared to the controls, p = .0011, OR = 8.24, 95% CI = 1.83-37.05, respectively). CONCLUSION: Polymorphisms of the D13S317 and D5S818 loci may be predisposing factors for schizophrenia.


Asunto(s)
Esquizofrenia , Alelos , Cromosomas , Genotipo , Humanos , Masculino , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA