Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Environ Sci Pollut Res Int ; 31(40): 53291-53303, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186204

RESUMEN

To compare the different effects of petroleum hydrocarbons on intertidal Ulva macroalgae, three dominant Ulva species (U. prolifera, U. linza, and U. lactuca) were exposed to two water-accommodated fractions (WAFs) of 0# diesel oil and crude oil at three concentration levels. The results indicated that two WAFs had significant concentration effects on the physiological characteristics of Ulva, the toxicity of 0# diesel oil was greater than crude oil, and crude oil had hormesis effect. Exposure of high WAFs concentrations, the growth, pigment, carbohydrate, and protein contents of Ulva were inhibited, while the antioxidant system was activated. In addition, the integrated biomarker response (IBR) indicated that U. prolifera had higher resistance to WAFs than U. linza and U. lactuca. Considering that U. prolifera is the main species of green tide in the Yellow Sea (YS) of China, the comparative effects of WAFs on different development stages of U. prolifera were also explored. The results showed that spore was the most sensitive to WAFs, while adult thalli was the most tolerant. The increased resistance of U. prolifera thalli and the hormesis effect triggered by crude oil may influence the outbreak scale of green tides. This study provides a new perspective for understanding the formation of green tides in the YS.


Asunto(s)
Hidrocarburos , Petróleo , Ulva , Ulva/efectos de los fármacos , Petróleo/toxicidad , Hidrocarburos/toxicidad , Contaminantes Químicos del Agua/toxicidad , China
2.
Int J Biol Macromol ; 278(Pt 1): 134672, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134199

RESUMEN

A hyperbranched poly (titanium oxide) (HBPTi) with hydroxyl terminal groups was synthesized via polycondensation reaction as a synergistic modifier with tannin to promote performance of casein-based composite film. The synergistic effects of HBPTis, acquiring different hyperbranched structures, with tannin on the microstructure, mechanical characteristics, barrier against water vapor, and thermal stability of casein-based film were investigated in this work. The tensile strength of the composite films increased from 7.6 MPa to 22.1 MPa, which accounts for 190.79 % increase after the addition of HBPTi compared to casein-tannin films modified with glycerol. The casein-tannin films with the help of HBPTi presented excellent water vapor permeation, thermal stability, and showed nearly 100 % UV absorption in the range 200-400 nm. Additionally, the microstructure of HBPTi modified casein-tannin films tend to be more compact due to the promoted interaction of casein-tannin composite aided by covalent bonding and/or other types of bonding between casein, tannin and HBPTi. Therefore, associative modification using such hyperbranched polymers and tannins provides extendable application value for casein-based films especially as food packaging materials and for other fields as well.


Asunto(s)
Caseínas , Taninos , Caseínas/química , Taninos/química , Embalaje de Alimentos/métodos , Polímeros/química , Resistencia a la Tracción , Vapor , Permeabilidad
4.
J Environ Manage ; 367: 122087, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111001

RESUMEN

With the rapid expansion of human activities, there has been a significant increase in the release of volatile organic compounds (VOCs) from factories and interior decoration materials, posing a substantial risk to the surrounding ecosystem and human health. Photocatalysis technology based on semiconductors has emerged as a promising solution for mitigating atmospheric pollution and indoor air quality concerns. However, single semiconductors encounter several challenges when it comes to VOC photodegradation, including issues like the weak adsorption capacity for VOC molecules, insufficient surface-active sites, and limited light utilization. In recent decades, carbon-based materials have gained considerable interest in photodegrading VOCs owing to their strong adsorption capacity, electrical conductivity, broad light absorption range, and tunable surface characteristics. The incorporation of carbon materials can enhance the photodegradation efficiency of VOCs by facilitating the transfer of VOCs from the ambient air to the surface of the photocatalysts, increasing the number of active surface sites, expanding the light absorption region, and promoting the separation of charge carriers. This review provides a comprehensive overview of the applications of carbon materials with different dimensions in enhancing the performance of semiconductors for the photocatalytic degradation of VOCs. Based on the fundamental principles of photocatalytic VOC degradation, this review explores the factors influencing the degradation performance of catalysts and elucidates the degradation mechanisms. Moreover, it summarizes a range of synthesis approaches for carbon-based photocatalysts, discussing the multiple roles played by carbon materials in these processes. In conclusion, the review offers insights into the current state of carbon-based photocatalysts and outlines the existing challenges. It also provides a perspective on the future development of these materials, highlighting the need for continued research and innovation in this field.


Asunto(s)
Carbono , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Carbono/química , Adsorción , Fotólisis
5.
Int J Biol Macromol ; 277(Pt 1): 133784, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084972

RESUMEN

In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.


Asunto(s)
Antibacterianos , Antioxidantes , Caseínas , Quitosano , Embalaje de Alimentos , Ceras , Embalaje de Alimentos/métodos , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Caseínas/química , Antioxidantes/química , Antioxidantes/farmacología , Ceras/química , Resistencia a la Tracción , Solubilidad , Permeabilidad , Vapor , Interacciones Hidrofóbicas e Hidrofílicas , Taninos/química
6.
Bioresour Bioprocess ; 11(1): 64, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954282

RESUMEN

Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts. Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bonds at propargylic positions has been established. A series of optically active propargylic alcohols were prepared with high regio- and enantioselectivity (up to 99% ee) under mild reaction conditions by using P450tol, while the C≡C bonds in the molecule remained unreacted. This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols. In addition, we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96% ee, which's an important synthetic intermediate of antifungal drug Ravuconazole.

7.
Int J Biol Macromol ; 275(Pt 2): 133707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972651

RESUMEN

Alcohol dehydrogenase (ADH) is an important enzyme that catalyzes alcohol oxidation and/or aldehyde reduction. As one of NAD+-dependent ADH types, iron-containing/activated ADH (Fe-ADH) is ubiquitous in Bacteria, Archaea, and Eukaryotes, possessing a similar "tunnel-like" structure that is composed of a domain A in its N-terminus and a domain B in its C-terminus. A conserved "GGGS" sequence in the domain A of Fe-ADH associates with NAD+, and one conserved Asp residue and three conserved His residues in the domain B are its catalytic active sites by surrounding with Fe atom, suggesting that it might employ similar catalytic mechanism. Notably, all the biochemically characterized Fe-ADHs from hyperthermophiles that thrive in above 80 °C possess two unique characteristics that are absent in other Fe-ADHs: thermophilicity and thermostability, thereby demonstrating that they can oxidize alcohol and reduce aldehyde at high temperature. Considering these two unique characteristics, Fe-ADHs from hyperthermophiles are potentially industrial biocatalysts for alcohol and aldehyde biotransformation at high temperature. Herein, we reviewed structural and biochemical characteristics of Fe-ADHs from hyperthermophiles, focusing on similarity and difference between Fe-ADHs from hyperthermophiles and their homologs from non-hyperthermophiles, and between hyperthermophilic archaeal Fe-ADHs and bacterial homologs. Furthermore, we proposed future directions of Fe-ADHs from hyperthermophiles.


Asunto(s)
Alcohol Deshidrogenasa , Estabilidad de Enzimas , Hierro , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Hierro/metabolismo , Hierro/química , Archaea/enzimología , Dominio Catalítico , Modelos Moleculares , Calor , Oxidación-Reducción
8.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000674

RESUMEN

In this study, we used a self-neutralizing system to counteract too acidic a pH, unsuitable for wood adhesives, and tested it on MUF resins augmented by the addition of citric acid or other organic acids, based on the addition of small percentages of hexamine or another suitable organic base to form an acid-base buffer. In this manner, the pH of the adhesive was maintained above the minimum allowed value of 4, and the strength results of wood particleboard and plywood bonded with this adhesive system increased due to the additional cross-linking imparted by the citric acid. Thus, the wood constituents at the wood/adhesive interface were not damaged/degraded by too low a pH, thus avoiding longer-term service failure of the bonded joints. The addition of the buffering system increased the strength of the bondline in both the plywood and particleboard, both when dry and after hot water and boiling water tests. The IB strength of the particleboard was then increased by 15-17% when dry but by 82% after boiling. For the plywood, the shear strengths when dry and after 3 h in hot water at 63 °C were, respectively, 37% and 90% higher than for the control. The improvement in the bonded panel strength is ascribed to multiple reasons: (i) the slower, more regular cross-linking rate due to the action of the buffer; (ii) the shift in the polycondensation-degradation equilibrium to the left induced by the higher pH and the long-term stability of the organic buffer; (iii) the additional cross-linking by citric acid of some of the MUF resin amine groups; (iv) the already known direct linking of citric acid with the carbohydrates and lignin constituents at the interface of the wood substrate; and (v) the likely covalent linking to the interfacial wood constituents of the prelinked MUF-citric acid resin by some of the unreacted citric acid carboxyl groups.

9.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926780

RESUMEN

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Animales , Terapia Genética/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanopartículas/química , Portadores de Fármacos/química , Vectores Genéticos
10.
J Antimicrob Chemother ; 79(6): 1423-1431, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38708557

RESUMEN

BACKGROUND: Bemnifosbuvir (AT-527) is a novel oral guanosine nucleotide antiviral drug for the treatment of persons with COVID-19. Direct assessment of drug disposition in the lungs, via bronchoalveolar lavage, is necessary to ensure antiviral drug levels at the primary site of SARS-CoV-2 infection are achieved. OBJECTIVES: This Phase 1 study in healthy subjects aimed to assess the bronchopulmonary pharmacokinetics, safety and tolerability of repeated doses of bemnifosbuvir. METHODS: A total of 24 subjects were assigned to receive bemnifosbuvir twice daily at doses of 275, 550 or 825 mg for up to 3.5 days. RESULTS: AT-511, the free base of bemnifosbuvir, was largely eliminated from the plasma within 6 h post dose in all dosing groups. Antiviral drug levels of bemnifosbuvir were consistently achieved in the lungs with bemnifosbuvir 550 mg twice daily. The mean level of the guanosine nucleoside metabolite AT-273, the surrogate of the active triphosphate metabolite of the drug, measured in the epithelial lining fluid of the lungs was 0.62 µM at 4-5 h post dose. This exceeded the target in vitro 90% effective concentration (EC90) of 0.5 µM for antiviral drug exposure against SARS-CoV-2 replication in human airway epithelial cells. Bemnifosbuvir was well tolerated across all doses tested, and most treatment-emergent adverse events reported were mild in severity and resolved. CONCLUSIONS: The favourable pharmacokinetics and safety profile of bemnifosbuvir demonstrates its potential as an oral antiviral treatment for COVID-19, with 550 mg bemnifosbuvir twice daily currently under further clinical evaluation in persons with COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Profármacos , SARS-CoV-2 , Humanos , Antivirales/farmacocinética , Antivirales/administración & dosificación , Antivirales/efectos adversos , Masculino , Adulto , Profármacos/farmacocinética , Profármacos/administración & dosificación , Femenino , SARS-CoV-2/efectos de los fármacos , Persona de Mediana Edad , Administración Oral , COVID-19 , Adulto Joven , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/virología , Voluntarios Sanos , Guanosina/análogos & derivados , Guanosina/farmacocinética , Guanosina/administración & dosificación
11.
Int J Biol Macromol ; 272(Pt 1): 132654, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810854

RESUMEN

Mre11 is one of important proteins that are involved in DNA repair and recombination by processing DNA ends to produce 3'-single stranded DNA, thus providing a platform for other DNA repair and recombination proteins. In this work, we characterized the Mre11 protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-Mre11) biochemically and dissected the roles of its four conserved residues, which is the first report on Mre11 proteins from Thermococcus. Tba-Mre11 possesses exonuclease activity for degrading ssDNA and dsDNA in the 5'-3' direction, which contrasts with other reported Mre11 homologs. Maximum degradation efficiency was observed with Mn2+ at 80 °C and at pH 7.5-9.5. In addition to possessing 5'-3' exonuclease activity, Tba-Mre11 has endonuclease activity that nicks plasmid DNA and circular ssDNA. Mutational data show that residues D10, D51 and N86 in Tba-Mre11 are essential for DNA degradation since almost no activity was observed for the D10A, D51A and N86A mutants. By comparison, residue D44 in Tba-Mre11 is not responsible for DNA degradation since the D44A mutant possessed the similar WT protein activity. Notably, the D44A mutant almost completely abolished the ability to bind DNA, suggesting that residue D44 is essential for binding DNA.


Asunto(s)
Proteínas Arqueales , ADN de Cadena Simple , Thermococcus , Thermococcus/enzimología , Thermococcus/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/química , Secuencia de Aminoácidos , Endonucleasas/metabolismo , Endonucleasas/química , Endonucleasas/genética , Mutación , Endodesoxirribonucleasas
12.
Heliyon ; 10(9): e29641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698977

RESUMEN

In order to study the role of oil spills in the occurrence of green tide in the Yellow Sea, the physiological characteristics and photosynthetic activities of green tide causative-species Ulva prolifera was monitored under different conditions including two oil water-accommodated fractions (WAFs) of diesel oil and crude oil, dispersed water-accommodated fractions (DWAFs) and dispersant GM-2. The results showed that, the physiological parameters of U. prolifera including the growth, pigment, carbohydrate and protein contents decreased with the increased diesel oil WAF (WAFDO) concentration, while crude oil WAF (WAFCO) showed low concentration induction and high concentration inhibition effect. In addition, with the increase of WAFs concentration, two antioxidant activities were activated. However, compared with WAFDO alone and WAFCO alone, the mixture of oil and dispersant enhanced the toxicity on the above physiological characteristics of U. prolifera. On the other hand, the photosynthetic efficiency of U. prolifera showed a similar trend. Two WAFs showed significant concentration effects on the chlorophyll-a fluorescence transients and JIP-test. The addition of dispersant further blocked the electron flow beyond QA and from plastoquinone (PQ) to PSI acceptor side, damaged the active OEC centers at the PSII donor side, suppressed the pool size and the reduction rate of PSI acceptor side, and reduced the energy transfer efficiency between PSII functional units. These results implied that the crude oil spills may induce the formation of U. prolifera green tide, and the oil dispersant GM-2 used after the oil spills is unlikely to further stimulate the scale of bloom, while the diesel oil spills is always not conducive to the outbreak of green tide of U. prolifera.

13.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702005

RESUMEN

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.


Asunto(s)
Adhesivos , Almidón , Agua , Zea mays , Almidón/química , Agua/química , Adhesivos/química , Zea mays/química , Oxidación-Reducción , Temperatura , Resistencia al Corte , Urea/química
14.
Antimicrob Agents Chemother ; 68(5): e0161523, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526047

RESUMEN

AT-752 is a novel guanosine nucleotide prodrug inhibitor of the dengue virus (DENV) polymerase with sub-micromolar, pan-serotype antiviral activity. This phase 1, double-blind, placebo-controlled, first-in-human study evaluated the safety, tolerability, and pharmacokinetics of ascending single and multiple oral doses of AT-752 in healthy subjects. AT-752 was well tolerated when administered as a single dose up to 1,500 mg or when administered as multiple doses up to 750 mg three times daily (TID). No serious adverse events occurred, and the majority of treatment-emergent adverse events were mild in severity and resolved by the end of the study. In those receiving single ascending doses of AT-752, no pharmacokinetic sensitivity was observed in Asian subjects, and no food effect was observed. Plasma exposure of the guanosine nucleoside metabolite AT-273, the surrogate of the active triphosphate metabolite of the drug, increased with increasing dose levels of AT-752 and exhibited a long half-life of approximately 15-25 h. Administration of AT-752 750 mg TID led to a rapid increase in plasma levels of AT-273 exceeding the target in vitro 90% effective concentration (EC90) of 0.64 µM in inhibiting DENV replication, and maintained this level over the treatment period. The favorable safety and pharmacokinetic results support the evaluation of AT-752 as an antiviral for the treatment of dengue in future clinical studies.Registered at ClinicalTrials.gov (NCT04722627).


Asunto(s)
Antivirales , Dengue , Nucleótidos de Guanina , Profármacos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Antivirales/efectos adversos , Antivirales/farmacocinética , Dengue/tratamiento farmacológico , Método Doble Ciego , Semivida , Profármacos/efectos adversos , Profármacos/farmacocinética , Adolescente
15.
Int J Biol Macromol ; 264(Pt 1): 130020, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336332

RESUMEN

Wood-based panels find widespread application in the furniture and construction industries. However, over 90 % of adhesives used are synthesized with formaldehyde, leading to formaldehyde emission and associated health risks. In this study, an entirely bio-based adhesive (OSL) was innovatively proposed through the condensation of multi-aldehyde derived from the oxidization of sucrose (OS) with sodium lignosulfonate (L). This approach positioned oxidized sucrose (OS) as a viable substitute for formaldehyde, ensuring safety, simplicity, and enhance water resistance upon reaction with L. The optimization of the OSL adhesive preparation process involved determining the oxidant level for high sucrose conversion to aldehyde (13 % based on sucrose), the mass ratio of OS to L (0.8), and hot-pressing temperature (200 °C). Notably, the shear strength of 3-plywood bonded with the developed adhesive (1.04 MPa) increased to 1.42 MPa after being immersed in hot water at 63 ±â€¯3 °C for 3 h. Additionally, the plywood specimens exhibited excellent performance after soaking in boiling water for 3 h, resulting in a shear strength of 1.03 MPa. Chemical analysis using Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed an addition reaction between L and OS, forming a dense network structure, effectively enhanceing the water resistance of OSL adhesives. Furthermore, compared with lignin-formaldehyde resin adhesive (LF), the OSL adhesive exhibited superior wet shear strength. This study offered an innovative approach for developing lignin-based adhesives utilizing a biomass aldehyde (OS), as a promising substitute for formaldehyde in the wood industry. The findings indicated that this approach may advance lignin-based adhesives, ensuring resistance to strength deterioration under highly humid environmental conditions.


Asunto(s)
Lignina , Agua , Lignina/química , Aldehídos , Adhesivos/química , Formaldehído/química , Sacarosa
16.
Int J Biol Macromol ; 262(Pt 1): 130067, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336318

RESUMEN

The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.


Asunto(s)
Caproatos , Celulosa/análogos & derivados , Lactonas , Taninos , Resistencia a la Tracción
17.
J Photochem Photobiol B ; 252: 112872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401433

RESUMEN

To study the influence and regulation of light quality on the microalgal photosynthetic activity and production of biomass and substances, green alga Dunaliella bardawil was cultured in this study under the monochromatic red light (7R0B), blue light (0R7B), and their combinations with different ratios (xRyB, x + y = 7), as well as a control of white light (W). The results demonstrated that the only advantage for control W was its chlorophyll-a (Chl-a) and Chl-b contents. All substance production at 7R0B were much lower than at control W, except of glycerol. Compared to control W, protein production at 1R6B (259.22 mg/L) was 1.10 times greater, carbohydrate production at 0R7B (306.49 mg/L) was 1.34 times higher, lipid production at 3R4B (133.60 mg/L) was 1.36 times higher, and glycerol production at 4R3B (53.58 mg/L) was 1.13 times greater. In comparison to control W, there was the significant improvements of at least 19%, 20%, and 5%, respectively, in the values of potential maximal relative electron transport efficiency (rETRmax), light intensity with saturated rETR (IK), and actual photochemical efficiency of PSII (QYss) in treatments. The correlation analysis revealed that the content of carotenoids was closely related to non-photochemical quenching (NPQ). The test using Chl-a fluorescence transients (JIP-test) proved that red light inhibited electron transport from reduced Quinone A (QA-) to QB and resulted in a sharp increase in RC/CSm, and that the blue-dominated light enhanced electron transport from QA- to QB and from plastoquinone (PQ) to PSI receptor side. The photosynthetic parameters including Ψo, φEO, φRO, δRO, PIABS, PItotal, DFABS, and DFtotal, which were positively correlated with growth and substance production, were improved by blue-dominated light. The variations in the electron transport chain might provide the signals for metabolic regulation. The results of this study will be helpful to promote the production of Dunaliella bardawil under artificial illumination and to clarify the regulating mechanism of light quality on microalgal photosynthesis.


Asunto(s)
Glicerol , Fotosíntesis , Glicerol/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Clorofila A/metabolismo , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
18.
Expert Opin Investig Drugs ; 33(1): 9-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38265202

RESUMEN

INTRODUCTION: Chronic hepatitis C virus (HCV) persists as a public health concern worldwide. Consequently, optimizing HCV therapy remains an important objective. While current therapies are generally highly effective, advanced antiviral agents are needed to maximize cure rates with potentially shorter treatment durations in a broader patient population, particularly those patients with advanced diseases who remain difficult to treat. AREAS COVERED: This review summarizes the in vitro anti-HCV activity, preclinical pharmacological properties of bemnifosbuvir (BEM, AT-527), a novel prodrug that is metabolically converted to AT-9010, the active guanosine triphosphate analogue that potently and selectively inhibits several viral RNA polymerases, including the HCV NS5B polymerase. Results from clinical proof-of-concept and phase 2 combination studies are also discussed. EXPERT OPINION: BEM exhibits potent pan-genotype activity against HCV, and has favorable safety, and drug interaction profiles. BEM is approximately 10-fold more potent than sofosbuvir against HCV genotypes (GT) tested in vitro. When combined with a potent NS5A inhibitor, BEM is expected to be a promising once-daily oral antiviral for chronic HCV infection of all genotypes and fibrosis stages with potentially short treatment durations.


Asunto(s)
Guanosina Monofosfato/análogos & derivados , Hepatitis C Crónica , Hepatitis C , Fosforamidas , Humanos , Hepacivirus , Hepatitis C Crónica/tratamiento farmacológico , Antivirales/efectos adversos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Hepatitis C/tratamiento farmacológico , Genotipo , Quimioterapia Combinada , Proteínas no Estructurales Virales
19.
Int J Biol Macromol ; 256(Pt 2): 128548, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043656

RESUMEN

A flame retardant high-performance gelatinized starch (GS)-ammonium dihydrogen phosphate (ADP) wood adhesive, named GS-ADP adhesive was prepared by condensation of GS and ADP under acidic condition. The preparation process of GS-ADP adhesive is very simple by mixing and stirring GS and ADP evenly at room temperature. The results revealed that the GS-ADP adhesive has good storage stability and water resistance, and its wet shear strength is much higher than that of phenolic resin (PF) adhesive. Markedly, the cone calorimeter test results show that G-ADP adhesive has good flame retardancy, and the plywood based on GS-ADP adhesive has good flame retardancy. Meanwhile, it can be seen from dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) that GS-ADP has excellent modulus of elasticity (MOE), high glass transition temperature (Tg) and good thermal stability. The findings suggest that GS-ADP could be a viable substitute for PF resin in structural wood fabrication.


Asunto(s)
Retardadores de Llama , Almidón , Zea mays , Módulo de Elasticidad , Fosfatos
20.
Int J Biol Macromol ; 258(Pt 2): 128994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157632

RESUMEN

Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.


Asunto(s)
Formiatos , Isocianatos , Poliuretanos , Taninos , Glutaral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...