Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(30): 36280-36288, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467491

RESUMEN

Room-temperature photocatalytic conversion of CH4 into liquid oxygenates with O2/H2O provides an appealing route for sustainable chemical industry, which, however, suffers from poor efficiency due to the undesired carrier kinetics and low yield of reactive oxygen species of the currently available photocatalysts. Here, we report an effective surface engineering strategy where concurrent constructions of oxygen vacancies and phosphate sites on TiO2 nanosheets address the above challenge. The surface oxygen vacancies and phosphates are respective acceptors of photogenerated electrons and holes for promoted separation and migration of charge carriers. Moreover, in addition to the facilitated activation of O2 to •OH by electrons at oxygen vacancies, the surface phosphates also facilely adsorb H2O via hydrogen bonds and thus effectively transfer holes to H2O for enhanced •OH production, thereby boosting CH4 conversion. As a result, compared with TiO2 sheets with only oxygen vacancies, a 2.8 times improvement in liquid oxygenate production with near-unity selectivity is achieved by virtue of the synergy of surface oxygen vacancies and phosphate sites, together with an unprecedent quantum efficiency of 19.8% under 365 nm irradiation.

2.
Eur J Pharmacol ; 936: 175342, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36341883

RESUMEN

OBJECTIVES: Cardiac protection of resveratrol is related to the improvement of mitochondrial function through sirtuin1 (SIRT1) activation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation. Asymmetric dimethylarginine (ADMA) as an endogenous inhibitor of nitric oxide synthases is associated with diabetic cardiovascular complications and has a cross-talk with lysine acetylation. This study was to determine whether resveratrol reverses ADMA's pathogenic role in diabetic cardiomyopathy and elucidate the underlying mechanisms in type 2 diabetic (T2DM) rats and cardiomyocytes. METHODS: T2DM Rats were induced by high-fat diet plus small-dose streptozotocin injection (35 mg/kg). Resveratrol was given by gavage (50 mg/kg/d) to some rats for 16w. Cardiac function was measured by echocardiography, and PGC-1α acetylation was detected by immunoprecipitation. Mitochondrial DNA and ATP contents were analyzed to evaluate mitochondrial biogenesis and function. RESULTS: Endogenous ADMA accumulation and its signal disorders were associated with cardiac and mitochondrial dysfunctions in accompany with increased PGC-1α acetylation and decreased PGC-1α expression in the myocardium of T2DM rats compared with control rats. Resveratrol treatment attenuated ADMA accumulation, cardiac and mitochondrial dysfunctions in parallel with reversing altered PGC-1α expression and acetylation in the myocardium of T2DM rats. Exogenous ADMA not only reproduced mitochondrial dysfunction and cardiac hypertrophy but also reduced PGC-1α expression and enhanced PGC-1α acetylation in accompany of down-regulating SIRT1 and up-regulating acetyltransferase expression, all of which could be prevented by resveratrol pretreatment in cardiomyocytes. CONCLUSIONS: These results indicate that ADMA promotes PGC-1α acetylation as a potential therapeutic target for resveratrol of management diabetic cardiomyopathy in T2DM rats.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Ratas , Acetilación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Miocitos Cardíacos , PPAR gamma , Resveratrol/farmacología , Sirtuina 1 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
3.
Front Pharmacol ; 13: 939090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935840

RESUMEN

Cancer becomes one of the main causes of human deaths in the world due to the high incidence and mortality rate and produces serious economic burdens. With more and more attention is paid on cancer, its therapies are getting more of a concern. Previous research has shown that the occurrence, progression, and treatment prognosis of malignant tumors are closely related to genetic and gene mutation. CRISPR/Cas9 has emerged as a powerful method for making changes to the genome, which has extensively been applied in various cell lines. Establishing the cell and animal models by CRISPR/Cas9 laid the foundation for the clinical trials which possibly treated the tumor. CRISPR-Cas9-mediated genome editing technology brings a great promise for inhibiting migration, invasion, and even treatment of tumor. However, the potential off-target effect limits its clinical application, and the effective ethical review is necessary. The article reviews the molecular mechanisms of CRISPR/Cas9 and discusses the research and the limitation related to cancer clinical trials.

4.
Dis Markers ; 2022: 4752184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756490

RESUMEN

Background: Immune-related long noncoding RNAs (IrlncRNAs) are recognized as important prognostic factors in a variety of cancers, but thus far, their prognostic value in pediatric rhabdoid tumor of the kidney (pRTK) has not been reported. Here, we clarified the associations between IrlncRNAs and overall survival (OS) of pRTK patients and constructed a model to predict their prognosis. Methods: We accessed RNA sequencing data and corresponding clinical data of pRTK from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. An expression profile of immune-related genes (Irgenes) and lncRNAs of pRTK was extracted from the RNA sequencing data. IrlncRNAs were defined by co-expression analysis of lncRNAs and Irgenes. The limma R package was used to identify differential expression IrlncRNAs. Univariate and multivariate Cox regression analyses were conducted to build a prognostic IrlncRNAs model. The performance of this prognostic model was validated by multimethods, like ROC curve analysis. Results: A total of 1097 IrlncRNAs were defined. Univariate Cox regression analysis identified 7 IrlncRNAs (AC004791.2, AP003068.23, RP11-54O7.14, RP11-680F8.1, TBC1D3P1-DHX40P1, TUNAR, and XXbac-BPG308K3.5) and were significantly associated with OS. Multivariate regression analysis constructed the best prognostic model based on the expression of AC004791.2, AP003068.23, RP11-54O7.14, TBC1D3P1-DHX40P1, and TUNAR. According to the prognostic model, a risk score of each patient was calculated, and patients were divided into high-risk and low-risk groups accordingly. The survival time of low-risk patients was significantly better than high-risk patients (p < 0.001). Univariate (hazard ratio 1.098, 95% confidence interval 1.048-1.149, p value <0.001) and multivariate (hazard ratio 1.095, 95% confidence interval 1.043-1.150, p value <0.001) analyses confirmed that the prognostic model was reliable and independent in prediction of OS. Time-dependent ROC analysis showed that 1-year survival AUC of prognostic model, stage, age, and sex was 0.824, 0.673, 0.531, and 0.495, respectively, which suggested that the prognostic model was the best predictor of survival in pRTK patients. Conclusions: The prognostic model based on 5 IrlncRNAs was robust and could better predict the survival of pRTK than other clinical factors. Additionally, the mechanism of regulation and action of prognosis-associated lncRNAs could provide new avenues for basic research to explore the mechanism of tumor initiation and development in order to prevent and treat pRTK.


Asunto(s)
Neoplasias Renales , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Niño , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/genética , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
ACS Appl Mater Interfaces ; 14(18): 21069-21078, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35485932

RESUMEN

Solar energy-driven direct CH4 conversion to liquid oxygenates provides a promising avenue toward green and sustainable CH4 industry, yet still confronts issues of low selectivity toward single oxygenate and use of noble-metal cocatalysts. Herein, for the first time, we report a defect-engineering strategy that rationally regulates the defective layer over TiO2 for selective aerobic photocatalytic CH4 conversion to HCHO without using noble-metal cocatalysts. (Photo)electrochemical and in situ EPR/Raman spectroscopic measurements reveal that an optimized oxygen-vacancy-rich surface disorder layer with a thickness of 1.37 nm can simultaneously promote the separation and migration of photogenerated charge carriers and enhance the activation of O2 and CH4, respectively, to •OH and •CH3 radicals, thereby synergistically boosting HCHO production in aerobic photocatalytic CH4 conversion. As a result, a HCHO production rate up to 3.16 mmol g-1 h-1 with 81.2% selectivity is achieved, outperforming those of the reported state-of-the-art photocatalytic systems. This work sheds light on the mechanism of O2-participated photocatalytic CH4 conversion on defective metal oxides and expands the application of defect engineering in designing low-cost and efficient photocatalysts.

6.
Eur J Pharmacol ; 902: 174081, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33901463

RESUMEN

Myocardial mitochondrial function and biogenesis are suppressed in diabetes, but the mechanisms are unclear. Increasing evidence suggests that asymmetric dimethylarginine (ADMA) is associated with diabetic cardiovascular complications. This study was to determine whether endogenous ADMA accumulation contributes to cardiac and mitochondrial dysfunctions of diabetic rats and elucidate the potential mechanisms. Diabetic rat was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). N-acetylcysteine was given (250 mg/kg/d) by gavage for 12w. Cardiac function was detected by echocardiography. Left ventricle papillary muscles were isolated to examine myocardial contractility. Myocardial ATP and mitochondrial DNA contents were measured to evaluate mitochondrial function and biogenesis. Endogenous ADMA accumulation was augmented resulting in decreased nitric oxide (NO) production and increased oxidative stress, suggesting NO synthase (NOS) uncoupling in the myocardium of T1DM rats compared with control rats. ADMA augmentation was associated with cardiac and mitochondrial dysfunctions along with myocardial uncoupling protein-2 (UCP2) upregulation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) downregulation in T1DM rats. Exogenous ADMA could directly inhibit myocardial contractility, mitochondrial function and biogenesis in parallel with decreasing NO content and PGC-1α expression while increasing oxidative stress and UCP2 expression in papillary muscles and cardiomyocytes. Treatment with antioxidant N-acetylcysteine, also an inhibitor of NOS uncoupling, either ameliorated ADMA-associated cardiac and mitochondrial dysfunctions or reversed ADMA-induced NO reduction and oxidative stress enhance in vivo and in vitro. These results indicate that myocardial ADMA accumulation precipitates cardiac and mitochondrial dysfunctions in T1DM rats. The underlying mechanism may be related to NOS uncoupling, resulting in NO reduction and oxidative stress increment, ultimate PGC-1α down-regulation and UCP2 up-regulation.


Asunto(s)
Arginina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Cardiopatías/metabolismo , Mitocondrias/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Arginina/metabolismo , Glucemia/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Glicosilación/efectos de los fármacos , Resistencia a la Insulina , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Músculos Papilares/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estreptozocina
7.
Life Sci ; 260: 118373, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898530

RESUMEN

AIMS: Endoplasmic reticulum stress (ERS) as an emerging factor is involved in insulin resistance (IR), which is the pathological basis of diabetes mellitus. Accumulation of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase is associated with IR, but the underlying mechanisms have not been elucidated. This study was to reveal the important role of ADMA in IR and determine whether endogenous ADMA accumulation contributes to hepatic IR via ERS in diabetic rats and hepatocytes. MATERIALS AND METHODS: Diabetic rat model was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg). Phosphorylation of insulin receptor substrate 1 (IRS1) and protein kinase B (Akt) was detected to evaluate IR. The protein kinase PKR-like ER kinase (PERK) and eukaryotic initiation factor 2α kinase (eIF2α) phosphorylation, x-box binding protein-1 (XBP-1) splicing, glucose-regulated protein 78 (GRP78) and C/EBP homologues protein (CHOP) expressions were measured to assess ERS. KEY FINDINGS: Endogenous ADMA content was significantly increased and positively correlated with either IR as evidenced by increased IRS1 at serine and reduced Akt phosphorylation or ERS as indicated by upregulations of PERK and eIF2α phosphorylation, XBP-1 splicing, GRP78 and CHOP expressions in the liver of diabetic rats compared with control rats. Exogenous ADMA directly caused IR and ERS in dose- and time-dependent manners in primary mouse hepatocytes. Pretreatment with ERS inhibitor 4-phenylbutyrate or ADMA antagonist L-arginine not only improved ADMA-associated or -induced hepatic IR but also attenuated ADMA-associated or -induced ERS in diabetic rats or hepatocytes. SIGNIFICANCE: These findings indicate that endogenous ADMA accumulation contributes to hepatic IR via ERS in diabetic rats.


Asunto(s)
Arginina/análogos & derivados , Diabetes Mellitus Experimental/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Intolerancia a la Glucosa/patología , Resistencia a la Insulina , Insulina/metabolismo , Hígado/patología , Animales , Apoptosis , Arginina/toxicidad , Diabetes Mellitus Experimental/inducido químicamente , Chaperón BiP del Retículo Endoplásmico , Intolerancia a la Glucosa/inducido químicamente , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal
8.
Nutr Metab (Lond) ; 17: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855652

RESUMEN

BACKGROUND: Suppressed mitochondrial biosynthesis has been reported to be the early signal of mitochondrial dysfunction which contributes to diabetic cardiomyopathy, but the mechanism of mitochondrial biosynthesis suppression is unclear. Nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is closely related to diabetic cardiovascular complications. This study was to determine whether endogenous ADMA accumulation was involved in the suppression of myocardial mitochondrial biogenesis in diabetic rats and to elucidate the potential mechanism in rat cardiomyocytes. METHODS: Type 2 diabetic rat model was induced by high-fat feeding plus single intraperitoneal injection of small dose streptozotocin (35 mg/kg). The copy number ratio of mitochondrial gene to nuclear gene was measured to reflect mitochondrial biogenesis. The promoter activity of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its post-translational modifications were detected by dual-luciferase reporter assay and immunoprecipitation. RESULTS: Myocardial ADMA content was enhanced and associated with suppressions of myocardial mitochondrial biogenesis and cardiac function in parallel with PGC-1α downregulation and uncoupling protein 2 (UCP2) upregulation in the myocardium of diabetic rats compared with control rats. Similarly, ADMA and its homolog could inhibit myocardial mitochondrial biogenesis and PGC-1α expression, increase UCP2 expression and oxidative stress in vitro and in vivo. Moreover, ADMA also suppressed the promoter activity and PGC-1α expression but boosting its protein acetylation and phosphorylation in rat cardiomyocytes. CONCLUSIONS: These results indicate that endogenous ADMA accumulation contributes to suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats. The underlying mechanisms may be associated with reducing PGC-1α promoter activity and expression but boosting its protein acetylation and phosphorylation.

9.
Cell Death Dis ; 10(2): 99, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718500

RESUMEN

Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a recently identified gene associated with malignant tumor progression and patient chemotherapy resistance in human hepatocellular carcinoma (HCC). Previously, we found an association between CHD1L overexpression and poor patient survival in non-small-cell lung cancer (NSCLC). However, little is known about the relationship between CHD1L expression and chemotherapy resistance of NSCLC. By employing immunohistochemistry, we analyzed the expression of CHD1L in NSCLC samples and elucidated the roles and mechanism of CHD1L in NSCLC chemoresistance. We found that the increased expression of CHD1L is positively correlated with a shorter survival time of patients who had received chemotherapy after surgery. We also found that the expression of CHD1L was increased after cisplatin treatment in A549 cells. Conversely, the depletion of CHD1L in cisplatin-resistance cells increased the cell sensitivity to cisplatin, indicating that CHD1L plays a critical role in cisplatin resistance of NSCLC cells. Importantly, we identified the ATP-Binding Cassette Sub-Family B Member (ABCB1) gene as a potential downstream target of CHD1L in NSCLC cells. Knocking down ABCB1 coupled with ectopic expression of CHD1L enhanced the effect of cisplatin on NSCLC cells apoptosis. In addition, overexpressed CHD1L increase the transcription of c-Jun which targeted directly to the promoter of ABCB1. Our data demonstrate that CHD1L could induce cisplatin resistance in NSCLC via c-Jun-ABCB1-NF-κB axis, and may serve as a novel predictive marker and the potential therapeutic target for cisplatin resistance in NSCLC.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/uso terapéutico , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Trasplante Heterólogo
10.
Am J Cancer Res ; 7(12): 2536-2544, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312806

RESUMEN

Increasing evidence demonstrates abnormal expression of long non-coding RNA (lncRNA) is closely correlated with various malignancies including hepatocellular carcinoma (HCC). The present study aims to investigate the role of lncRNA long intergenic noncoding RNA 00673 (LINC00673) in tumorigenesis of HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed LINC00673 was upregulated in HCC cancerous tissue and cell lines compared to adjacent normal tissue and normal liver cell lines. LINC00673 overexpression is associated with poor prognosis and low survival rate. LINC00673 silencing inhibited the proliferation, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro. Bioinformatics analysis revealed that miR-205 targeted 3'-UTR of LINC00673. Rescue experiments confirmed that miR-205 could reverse the effect of LINC00673 on HCC cells. In vivo xenograft tumor assay LINC00673 silencing reduced the tumor volume and weight. Taken together, findings indicate overexpression of LINC00673 promotes HCC cells progression by regulating miR-205, providing a prognostic biomarker and therapeutic target for HCC and is associated with poor survival of HCC patients.

11.
Cell Cycle ; 14(24): 3877-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697838

RESUMEN

The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.


Asunto(s)
Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Aurora Quinasa B/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Citometría de Flujo , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Noqueados , Mitosis/genética , Mitosis/fisiología , Proteínas Quinasas Asociadas a Fase-S/genética
12.
World J Gastroenterol ; 17(32): 3700-8, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21990951

RESUMEN

AIM: To explore the effects of siRNA silencing of PIK3CA on proliferation, migration and invasion of gastric cancer cells and to investigate the underlying mechanisms. METHODS: The mutation of PIK3CA in exons 9 and 20 of gastric cancer cell lines HGC-27, SGC-7901, BGC-823, MGC-803 and MKN-45 was screened by polymerase chain reaction (PCR) followed by sequencing. BGC-823 cells harboring no mutations in either of the exons, and HGC-27 cells containing PIK3CA mutations were employed in the current study. siRNA targeting PIK3CA was chemically synthesized and was transfected into these two cell lines in vitro. mRNA and protein expression of PIK3CA were detected by real-time PCR and Western blotting, respectively. We also measured phosphorylation of a serine/threonine protein kinase (Akt) using Western blotting. The proliferation, migration and invasion of these cells were examined separately by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing and Transwell chambers assay. RESULTS: The siRNA directed against PIK3CA effectively led to inhibition of both endogenous mRNA and protein expression of PIK3CA, and thus significantly down-regulated phosphorylation of Akt (P < 0.05). Furthermore, simultaneous silencing of PIK3CA resulted in an obvious reduction in tumor cell proliferation activity, migration and invasion potential (P < 0.01). Intriguing, mutant HGC-27 cells exhibited stronger invasion ability than that shown by wild-type BGC-823 cells. Knockdown of PIK3CA in mutant HGC-27 cells contributed to a reduction in cell invasion to a greater extent than in non-mutant BGC-823 cells. CONCLUSION: siRNA mediated targeting of PIK3CA may specifically knockdown the expression of PIK3CA in gastric cancer cells, providing a potential implication for therapy of gastric cancer.


Asunto(s)
Invasividad Neoplásica/fisiopatología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
World J Gastroenterol ; 16(39): 4986-91, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20954287

RESUMEN

AIM: To explore expressions of PIK3CA in the progression of gastric cancer from primary to metastasis and its effects on activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway. METHODS: mRNA and protein levels of PIK3CA were assessed, respectively, by real-time quantitative polymerase chain reaction and immunohistochemistry in specimens of normal gastric mucosa, primary foci and lymph node and distant metastasis of gastric cancer. Akt and phosphorylated Akt protein were also examined by Western blotting in these tissues, in order to analyze the effect of PIK3CA expression level changes on the activation of PI3K/Akt signaling pathway. RESULTS: PIK3CA mRNA in lymph node metastasis were approximately 5 and 2 folds higher, respectively, than that in the corresponding normal gastric mucosa and primary gastric cancer tissues (P < 0.05), while no statistical significance was found compared with distant metastasis. Immunohistochemically, PIK3CA protein expression was discovered in 7 (35%) specimens of 20 primary foci vs 10 (67%) of 15 of lymph node metastasis or 11 (61%) of 18 of distant metastasis (35% vs 67%, P = 0.015; 35% vs 61%, P = 0.044). With the increased level of PIK3CA expression, the total Akt protein expression remained almost unchanged, but p-Akt protein was upregulated markedly. CONCLUSION: Increased expression of PIK3CA is expected to be a promising indicator of metastasis in gastric cancer. Up-regulation of PIK3CA may promote the metastasis of gastric cancer through aberrant activation of PI3K/Akt signaling.


Asunto(s)
Carcinoma/enzimología , Fosfatidilinositol 3-Quinasas/análisis , Neoplasias Gástricas/enzimología , Adulto , Anciano , Western Blotting , Carcinoma/genética , Carcinoma/secundario , Fosfatidilinositol 3-Quinasa Clase I , Femenino , Humanos , Inmunohistoquímica , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/patología , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/análisis , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...