Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Mol Biol ; 114(1): 9, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315324

RESUMEN

To select poplar clones with excellent adventitious roots development (ARD) and deepen the understanding of its molecular mechanism, a comprehensive evaluation was conducted on 38 Populus germplasm resources with cuttings cultured in the greenhouse. Genetic differences between poplar clones with good ARD and with poor ARD were explored from the perspectives of genomics and transcriptomics. By cluster analysis of the seven adventitious roots (AR) traits, the materials were classified into three clusters, of which cluster I indicated excellent AR developmental capability and promising breeding potential, especially P.×canadensis 'Guariento', P. 'jingtong1', P. deltoides 'Zhongcheng5', P. deltoides 'Zhongcheng2'. At the genomic level, the cross-population composite likelihood ratio (XP-CLR) analysis identified 1944 positive selection regions related to ARD, and variation detection analysis identified 3426 specific SNPs and 687 specific Indels in the clones with good ARD, 3212 specific SNPs and 583 specific Indels in the clones with poor ARD, respectively. Through XP-CLR, variation detection, and weighted gene co-expression network analysis based on transcriptome data, eight major putative genes associated with poplar ARD were primary identified, and a co-expression network of eight genes was constructed, it was discovered that CSD1 and WRKY6 may be important in the ARD. Subsequently, we confirmed that SWEET17 had a non-synonymous mutation at the site of 928,404 in the clones with poor ARD, resulting in an alteration of the amino acid. After exploring phenotypic differences and the genetic variation of adventitious roots development in different poplar clones, this study provides valuable reference information for future poplar breeding and genetic improvement.


Asunto(s)
Populus , Populus/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Fenotipo , Raíces de Plantas/genética
2.
Hortic Res ; 11(1): uhad255, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274646

RESUMEN

Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.

3.
Eur J Med Chem ; 261: 115793, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37708797

RESUMEN

Proteolysis-targeting chimeras (PROTACs) have been an area of intensive research with the potential to extend drug space not target to traditional molecules. In the last half decade, we have witnessed several PROTACs initiated phase I/II/III clinical trials, which inspired us a lot. However, the structure of PROTACs beyond "rule of 5" resulted in developing PROTACs with acceptable oral pharmacokinetic (PK) properties remain one of the biggest bottleneck tasks. Many reports have demonstrated that it is possible to access orally bioavailable PROTACs through rational ligand and linker modifications. In this review, we systematically reviewed and highlighted the most recent advances in orally bioavailable PROTACs development, especially focused on the medicinal chemistry campaign of discovery process and in vivo oral PK properties. Moreover, the constructive strategies for developing oral PROTACs were proposed comprehensively. Collectively, we believe that the strategies summarized here may provide references for further development of oral PROTACs.


Asunto(s)
Química Farmacéutica , Quimera Dirigida a la Proteólisis , Proteolisis , Ubiquitina-Proteína Ligasas
4.
J Biomater Appl ; 38(3): 372-380, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37531192

RESUMEN

In recent years, the application of nanoimaging technology on standardize tumor diagnosis has become a new research hotspot, especially nanoprobes. Our research group has synthesized a kind of nanocarrier, mPEG2000-GPLGIAGQ-DSPE, which has the characteristic of matrix metalloproteinase-2 (MMP2) sensitive ability in tumor microenvironment. Meanwhile, the encapsulation method is adopted to prepare MMP2-sensitive tumor-targeted prussian blue fluorescent nanoprobe with mPEG2000-GPLGIAGQ-DSPE as the carrier. On the one hand, this novel nanoprobe not only can effectively improve the solubility of prussian blue, but is non-toxic and safe for cells. On the other hand, octapeptide (GPLGIAGQ) in mPEG2000-GPLGIAGQ-DSPE nanocarrier can specifically respond to MMP2 in tumor cells to release prussian blue, and achieve targeted intelligent imaging of tumor cells.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Ferrocianuros , Microambiente Tumoral
5.
J Cancer Res Clin Oncol ; 149(17): 15469-15478, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37642722

RESUMEN

PURPOSE: To investigate the performance of deep learning and radiomics features of intra-tumoral region (ITR) and peri-tumoral region (PTR) in the diagnosing of breast cancer lung metastasis (BCLM) and primary lung cancer (PLC) with low-dose CT (LDCT). METHODS: We retrospectively collected the LDCT images of 100 breast cancer patients with lung lesions, comprising 60 cases of BCLM and 40 cases of PLC. We proposed a fusion model that combined deep learning features extracted from ResNet18-based multi-input residual convolution network with traditional radiomics features. Specifically, the fusion model adopted a multi-region strategy, incorporating the aforementioned features from both the ITR and PTR. Then, we randomly divided the dataset into training and validation sets using fivefold cross-validation approach. Comprehensive comparative experiments were performed between the proposed fusion model and other eight models, including the intra-tumoral deep learning model, the intra-tumoral radiomics model, the intra-tumoral deep-learning radiomics model, the peri-tumoral deep learning model, the peri-tumoral radiomics model, the peri-tumoral deep-learning radiomics model, the multi-region radiomics model, and the multi-region deep-learning model. RESULTS: The fusion model developed using deep-learning radiomics feature sets extracted from the ITR and PTR had the best classification performance, with the area under the curve of 0.913 (95% CI 0.840-0.960). This was significantly higher than that of the single region's radiomics model or deep learning model. CONCLUSIONS: The combination of radiomics and deep learning features was effective in discriminating BCLM and PLC. Additionally, the analysis of the PTR can mine more comprehensive tumor information.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
7.
Front Pharmacol ; 14: 1142127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033615

RESUMEN

Gastric cancer is the third leading cause of cancer related death worldwide. Due to the complexity and heterogeneity of gastric cancer, the development of targeted drugs is somehow limited, but is urgently needed. Since the expression of Bruton tyrosine kinase (BTK) was significantly associated with the prognosis of gastric cancer patients, we aimed to determine the anti-cancer activity of HZ-A-018, which was a novel derivative of ACP-196, in gastric cancer cells. As a result, HZ-A-018 presented a stronger anti-proliferation activity than ACP-196 via the substantial suppression of AKT/S6 pathway. In addition, HZ-A-018, but not ACP-196, exerted the synergistic effects in combined treatment with 5-FU both in vitro and in vivo, without exacerbating the adverse effects of 5-FU. Mechanismly, the combination of HZ-A-018 and 5-FU remarkably reduced the expression of RRM2, which played an essential role in proliferation and drug sensitivity in gastric cancer cells. In summary, our work demonstrated the stronger anti-cancer activity of HZ-A-018 than ACP-196 in gastric cancer cells, and revealed synergistic effects of HZ-A-018 and 5-FU combination probably through the inhibition of RRM2 via AKT/S6 pathway, thereby providing a promising therapeutic strategy in gastric cancer.

8.
BMC Plant Biol ; 23(1): 182, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020197

RESUMEN

BACKGROUND: Forest trees such as poplar, shrub willow, et al. are essential natural resources for sustainable and renewable energy production, and their wood can reduce dependence on fossil fuels and reduce environmental pollution. However, the productivity of forest trees is often limited by the availability of nitrogen (N), improving nitrogen use efficiency (NUE) is an important way to address it. Currently, NUE genetic resources are scarce in forest tree research, and more genetic resources are urgently needed. RESULTS: Here, we performed genome-wide association studies (GWAS) using the mixed linear model (MLM) to identify genetic loci regulating growth traits in Populus cathayana at two N levels, and attempted to enhance the signal strength of single nucleotide polymorphism (SNP) detection by performing genome selection (GS) assistance GWAS. The results of the two GWAS analyses identified 55 and 40 SNPs that were respectively associated with plant height (PH) and ground diameter (GD), and 92 and 69 candidate genes, including 30 overlapping genes. The prediction accuracy of the GS model (rrBLUP) for phenotype exceeds 0.9. Transcriptome analysis of 13 genotypes under two N levels showed that genes related to carbon and N metabolism, amino acid metabolism, energy metabolism, and signal transduction were differentially expressed in the xylem of P. cathayana under N treatment. Furthermore, we observed strong regional patterns in gene expression levels of P. cathayana, with significant differences between different regions. Among them, P. cathayana in Longquan region exhibited the highest response to N. Finally, through weighted gene co-expression network analysis (WGCNA), we identified a module closely related to the N metabolic process and eight hub genes. CONCLUSIONS: Integrating the GWAS, RNA-seq and WGCNA data, we ultimately identified four key regulatory genes (PtrNAC123, PtrNAC025, Potri.002G233100, and Potri.006G236200) involved in the wood formation process, and they may affect P. cathayana growth and wood formation by regulating nitrogen metabolism. This study will provide strong evidence for N regulation mechanisms, and reliable genetic resources for growth and NUE genetic improvement in poplar.


Asunto(s)
Estudio de Asociación del Genoma Completo , Populus , Populus/genética , Perfilación de la Expresión Génica , Fotosíntesis , Nitrógeno/metabolismo , Transcriptoma
9.
Front Cardiovasc Med ; 9: 921778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935642

RESUMEN

Introduction: Metabolic syndrome-associated cardiovascular disease (MetS-CVD) is a cluster of metabolism-immunity highly integrated diseases. Emerging evidence hints that mitochondrial energy metabolism may be involved in MetS-CVD development. The physiopathological role of ATP5MG, a subunit of the F0 ATPase complex, has not been fully elucidated. Methods: In this study, we selected ATP5MG to identify the immunity-mediated pathway and mine drugs targeting this pathway for treating MetS-CVD. Using big data from public databases, we dissected co-expressed RNA (coRNA), competing endogenous RNA (ceRNA), and interacting RNA (interRNA) genes for ATP5MG. Results: It was identified that ATP5MG may form ceRNA with COX5A through hsa-miR-142-5p and interplay with NDUFB8, SOD1, and MDH2 through RNA-RNA interaction under the immune pathway. We dug out 251 chemicals that may target this network and identified some of them as clinical drugs. We proposed five medicines for treating MetS-CVD. Interestingly, six drugs are being tested to treat COVID-19, which unexpectedly offers a new potential host-targeting antiviral strategy. Conclusion: Collectively, we revealed the potential significance of the ATP5MG-centered network for developing drugs to treat MetS-CVD, which offers insights into the epigenetic regulation for metabolism-immunity highly integrated diseases.

10.
Front Oncol ; 12: 857715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444942

RESUMEN

Objectives: The objective of our project is to explore a noninvasive radiomics model based on magnetic resonance imaging (MRI) that could recognize the expression of vascular endothelial growth factor (VEGF) in hepatocellular carcinoma before operation. Methods: 202 patients with proven single HCC were enlisted and stochastically distributed into a training set (n = 142) and a test set (n = 60). Arterial phase, portal venous phase, balanced phase, delayed phase, and hepatobiliary phase images were used to radiomics features extraction. We retrieved 1906 radiomic features from each phase of every participant's MRI images. The F-test was applied to choose the crucial features. A logistic regression model was adopted to generate a radiomics signature. By combining independent risk indicators from the fusion radiomics signature and clinico-radiological features, we developed a multivariable logistic regression model that could predict the VEGF status preoperatively through calculating the area under the curve (AUC). Results: The entire group comprised 108 VEGF-positive individuals and 94 VEGF-negative patients. AUCs of 0.892 (95% confidence interval [CI]: 0.839 - 0.945) in the training dataset and 0.800 (95% CI: 0.682 - 0.918) in the test dataset were achieved by utilizing radiomics features from two phase images (8 features from the portal venous phase and 5 features from the hepatobiliary phase). Furthermore, the nomogram relying on a combined model that included the clinical factors α-fetoprotein (AFP), irregular tumor margin, and the fusion radiomics signature performed well in both the training (AUC = 0.936, 95% CI: 0.898-0.974) and test (AUC = 0.836, 95% CI: 0.728-0.944) datasets. Conclusions: The combined model acquired from two phase (portal venous and hepatobiliary phase) pictures of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI could be considered as a credible prognostic marker for the level of VEGF in HCC.

11.
Onco Targets Ther ; 15: 181-191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250277

RESUMEN

BACKGROUND: Several reports have suggested that glucose transporter 3 (GLUT-3) promotes tumor metastasis. The aim of this study was to examine the relationship between the expression level of GLUT-3 and the prognosis of patients with diffuse large B cell lymphoma (DLBCL). METHODS: The GLUT-3 expression levels in 91 DLBCL patients were evaluated by immunohistochemistry. The relationships between GLUT-3 expression level and clinicopathological characteristics and progression-free survival (PFS) of DLBCL patients were analyzed. The use of validation cohorts confirmed the predictive value of GLUT-3 expression. The correlation between GLUT-3 and immune cell infiltration was investigated using the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts system and the analysis of the infiltrating score was obtained by single sample Gene Set Enrichment Analysis. RESULTS: Expression of GLUT-3, which is highly expressed in DLBCL patients, was significantly associated with elevated serum LDH level, recurrence and Ki-67 status. Kaplan-Meier analysis showed that high GLUT-3 expression levels in DLBCL were related to poor PFS. Univariate and multivariate analyses results showed that low GLUT-3 expression level was significantly but independently associated with favorable PFS in DLBCL patients. GLUT-3 expression was also correlated with immune cell infiltration and the analysis of the infiltrating score. CONCLUSION: Our results indicate that GLUT-3 may act as a potential independent prognostic factor in DLBCL patients. The difference of the immune microenvironment in DLBCL patients may be predicted by the expression level of GLUT-3.

12.
Bioengineered ; 13(2): 2992-3006, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35129428

RESUMEN

ABBREVIATIONS: CC: Closeness centrality; OS: Osteosarcoma; TCM: Traditional Chinese medicine; NSCLC: Non-small cell lung cancer; DC: Degree centrality; CHM: Chinese herb medicine; BC: Betweenness centrality.


Asunto(s)
Neoplasias Óseas , Carcinoma de Pulmón de Células no Pequeñas , Fallopia japonica , Neoplasias Pulmonares , Osteosarcoma , Receptores ErbB , Humanos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal
13.
J Cell Mol Med ; 26(2): 515-526, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921503

RESUMEN

Pancreatic cancer is one of the most notorious diseases for being asymptomatic at early stage and high mortality rate thereafter. However, either chemotherapy or targeted therapy has rarely achieved success in recent clinical trials for pancreatic cancer. Novel therapeutic regimens or agents are urgently in need. Ibr-7 is a novel derivative of ibrutinib, displaying superior antitumour activity in pancreatic cancer cells than ibrutinib. In vitro studies showed that ibr-7 greatly inhibited the proliferation of BxPC-3, SW1990, CFPAC-1 and AsPC-1 cells via the induction of mitochondrial-mediated apoptosis and substantial suppression of mTOR/p70S6K pathway. Moreover, ibr-7 was able to sensitize pancreatic cancer cells to gemcitabine through the efficient repression of TRIM32, which was positively correlated with the proliferation and invasiveness of pancreatic cancer cells. Additionally, knockdown of TRIM32 diminished mTOR/p70S6K activity in pancreatic cancer cells, indicating a positive feedback loop between TRIM32 and mTOR/p70S6K pathway. To conclude, this work preliminarily explored the role of TRIM32 in the malignant properties of pancreatic cancer cells and evaluated the possibility of targeting TRIM32 to enhance effectiveness of gemcitabine, thereby providing a novel therapeutic target for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Quinasas S6 Ribosómicas 70-kDa , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Desoxicitidina/análogos & derivados , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Gemcitabina
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614067

RESUMEN

The adventitious root (AR) is the basis for successful propagation by plant cuttings and tissue culture and is essential for maintaining the positive traits of a variety. Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolisms and have few studies on root growth and amino acid transport. In this study, with a systematic bioinformatics analysis of the Populus AAAP family, 83 PtrAAAPs were identified from Populus trichocarpa and grouped into 8 subfamilies. Subsequently, chromosomal distribution, genetic structure, cis-elements analysis, and expression pattern analysis of the AAAP family were performed and the potential gene AAAP21 regulating root development was screened by combining the results of RNA-Seq and QTL mapping. PsAAAP21 was proven as promoting root development by enhancing AR formation. Differentially expressed genes (DEGs) from RNA-seq results of overexpressing lines were enriched to multiple amino acid-related pathways, and the amino acid treatment to transgenic lines indicated that PsAAAP21 regulated amino acid transport, including tyrosine, methionine, and arginine. Analysis of the AAAP gene family provided a theoretical basis for uncovering the functions of AAAP genes. The identification of PsAAAP21 on root promotion and amino acid transport in Populus will help with breeding new woody plant species with strong rooting ability.


Asunto(s)
Ácidos Indolacéticos , Populus , Ácidos Indolacéticos/metabolismo , Populus/metabolismo , Fitomejoramiento , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770941

RESUMEN

Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women's physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas del Metal/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo
16.
ACS Appl Mater Interfaces ; 13(43): 50760-50773, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672620

RESUMEN

Therapeutic nanosystems triggered by a specific tumor microenvironment (TME) offer excellent safety and selectivity in the treatment of cancer by in situ conversion of a less toxic substance into effective anticarcinogens. However, the inherent antioxidant systems, hypoxic environment, and insufficient hydrogen peroxide (H2O2) in tumor cells severely limit their efficacy. Herein, a new strategy has been developed by loading the chemotherapy prodrug disulfiram (DSF) and coating glucose oxidase (GOD) on the surface of Cu/ZIF-8 nanospheres and finally encapsulating manganese dioxide (MnO2) nanoshells to achieve efficient DSF-based cancer chemotherapy and dual-enhanced chemodynamic therapy (CDT). In an acidic TME, the nanocatalyst can biodegrade rapidly and accelerate the release of internal active substances. The outer layer of MnO2 depletes glutathione (GSH) to destroy the reactive oxygen defensive mechanisms and achieves continuous oxygen generation, thus enhancing the catalytic efficiency of GOD to burst H2O2. Benefiting from the chelation reaction between the released Cu2+ and DSF, a large amount of cytotoxic CuET products is generated, and the Cu+ are concurrently released, thereby achieving efficient chemotherapy and satisfactory CDT efficacy. Furthermore, the release of Mn2+ can initiate magnetic resonance imaging signals for the tracking of the nanocatalyst.


Asunto(s)
Antineoplásicos/farmacología , Disulfiram/farmacología , Peróxido de Hidrógeno/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Catálisis , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobre/química , Cobre/metabolismo , Cobre/farmacología , Disulfiram/química , Disulfiram/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Iones/química , Iones/metabolismo , Iones/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Compuestos de Manganeso/farmacología , Estructura Molecular , Óxidos/química , Óxidos/metabolismo , Óxidos/farmacología , Tamaño de la Partícula , Zeolitas/química , Zeolitas/metabolismo , Zeolitas/farmacología
17.
Int J Biol Macromol ; 191: 600-607, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34582906

RESUMEN

In order to obtain a synergistic antimicrobial effect of cuprous oxide nanoparticles (Cu2O NPs) and chitosan (CS) nanofibers, the nano Cu2O/CS nanofibrous scaffolds were synthesized in situ via two subsequent steps of chelation and reduction. The Cu2+ were stably chelated on CS nanofibrous scaffolds through the coordination of amino group (-NH2) and hydroxyl group (-OH) on CS with Cu2+, and then the chelated Cu2+ were reduced to nano Cu2O by Vitamin C under alkaline conditions. And by the measurements of XRD, XPS and FTIR-ATR, the results showed that Cu2O NPs were successfully deposited on the CS nanofibrous scaffolds. SEM clarified that the particle size of Cu2O gradually decreased and the shape changed from cubic to irregular with the increase of CuSO4 concentration. With the CuSO4 concentration of 0.02 and 0.04 mol·L-1, the Cu2O/CS nanofibrous scaffolds presented outstanding hydrophilicity and antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) comparing to the CS nanofibrous scaffolds, meanwhile, they possessed good biocompatibility. This kind of nanofibrous scaffolds deposited with nano Cu2O would have broad application prospects in the field of antibacterial biomaterials.


Asunto(s)
Antiinfecciosos/química , Quitosano/análogos & derivados , Cobre/química , Nanofibras/química , Andamios del Tejido/química , Animales , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Células 3T3 NIH , Staphylococcus aureus/efectos de los fármacos
18.
Front Plant Sci ; 12: 660226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122482

RESUMEN

Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana 'Neva' by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana 'Neva' lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.

19.
Int J Endocrinol ; 2021: 5566019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007273

RESUMEN

OBJECTIVES: Melatonin is an essential neuroendocrine hormone that participates in the regulation of sleep rhythm and cognitive function. This study aimed to determine serum melatonin levels with mild cognitive impairment (MCI) in patients with type 2 diabetes (T2DM). METHODS: A total of 247 T2DM patients were recruited in this retrospective study and divided into 75 subjects with MCI and 172 with normal cognition. Cognitive function was evaluated by the Montreal Cognitive Assessment (MoCA). Their blood sample was examined for the level of melatonin and other biochemical parameters. RESULTS: Melatonin concentration was decreased in MCI patients to non-MCI patients (P < 0.001). Melatonin level was negatively correlated with age (r = -0.202; P = 0.001), diabetes duration (r = -0.282; P < 0.001), serum HbA1c (r = -0.195; P = 0.002), hs-CRP (r = -0.324; P < 0.001), and TSH (r = -0.184; P = 0.004) levels and positively correlated with MoCA score, serum HDL-C (r = 0.145; P < 0.001), FT3 (r = 0.241; P < 0.001), and FT4 (r = 0.169; P = 0.008) levels. The multivariable analysis indicated that fewer years of formal education, longer diabetes duration, higher serum HbA1c, higher serum hs-CRP, and lower serum melatonin are the predisposing factors for MCI. CONCLUSION: Lower melatonin level was associated with cognitive impairment in patients with T2DM. Melatonin might serve as a potential protective molecule against cognitive dysfunction in T2DM.

20.
Front Plant Sci ; 12: 661655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763105

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2020.01123.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...