Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 299(1): 45, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635011

RESUMEN

Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.


Asunto(s)
MicroARNs , Factores de Transcripción Otx , Hemorragia Subaracnoidea , Animales , Ratas , Proteínas de Homeodominio , MicroARNs/genética , Factor 2 Relacionado con NF-E2 , Oxihemoglobinas , Factores de Transcripción Otx/genética
2.
Materials (Basel) ; 16(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834546

RESUMEN

Of major concern is the lack of correlation between the material design and structural function of asphalt pavement in China. The objective of this paper is to identify the layer in asphalt pavement where permanent deformation occurs most seriously and to propose a control index for that layer's asphalt mixture. The permanent deformation of each layer was determined through the utilization of thickness measurements obtained from field cores. The results indicate that the reduction in thickness is more significant in the driving lane than in the ridge band and shoulder. This phenomenon can be attributed to the intensified densification and shearing deformation that arise from the combined impacts of recurrent axle loads and high temperatures. Compared to surface and base layers, the bearing layer is the primary area of concern for permanent deformation in asphalt pavement. Therefore, it is imperative to incorporate the ability of bearing-layer asphalt mixture to withstand permanent deformation as a crucial design parameter. The dynamic modulus of the bearing-layer asphalt mixture is significantly influenced by the type of asphalt, gradation, and asphalt content, compared to other design parameters. Based on the relationship established between dynamic modulus and dynamic stability, with creep rate as the intermediate term, a control standard was proposed to evaluate the permanent deformation of the bearing-layer asphalt mixture. This study can provide reasonable and effective guidance for prolonging pavement life and improving pavement performance.

3.
J Mol Histol ; 53(1): 85-96, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34709490

RESUMEN

Subarachnoid hemorrhage (SAH), a common devastating cerebrovascular accident, is a great threat to human health and life. Exploration of the potential therapeutic target of SAH is urgently needed. Previous studies showed that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes cell apoptosis in various diseases, while its role in SAH remains unclear. In our study, we established a mouse model of SAH and used the oxyhemoglobin (OxyHb) to induce neuronal injury in vitro. Interestingly, MALAT1 was found upregulated in brain tissues of SAH mice and OxyHb-stimulated neurons. In addition, knockdown of MALAT1 attenuated apoptosis and decreased reactive oxygen species (ROS) production in OxyHb-stimulated neurons. Mechanistically, we demonstrated that MALAT1 bound with miR-499-5p. Furthermore, our findings indicated that miR-499-5p bound to SOX6 3' untranslated region (UTR) and negatively regulated SOX6 mRNA and protein levels. Rescue assays suggested that SOX6 overexpression counteracted the effects of MALAT1 knockdown on neurocyte apoptosis, and ROS production in OxyHb-stimulated neurons. The in vivo assays indicated that knockdown of MALAT1 improved brain injury of SAH mice. Our study demonstrates that silencing of MALAT1 alleviates neurocyte apoptosis and reduces ROS production through the miR-499-5p/SOX6 axis after SAH injury.


Asunto(s)
Apoptosis , MicroARNs/genética , Neuronas/patología , ARN Largo no Codificante/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXD/genética , Hemorragia Subaracnoidea/prevención & control , Animales , Western Blotting , Caspasa 3/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Silenciador del Gen/fisiología , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/patología , Transfección
4.
Bioengineered ; 12(1): 7794-7804, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704542

RESUMEN

Early brain injury, characterized by massive cell apoptosis or death, is identified as a critical pathophysiological process during subarachnoid hemorrhage (SAH). Ferroptosis, a class of autophagy-dependent cell death discovered in 2012, is induced by iron-dependent lipid peroxidation accumulation. The present study was designed to study the role of baicalin in autophagy-dependent ferroptosis in early brain injury after SAH. Neurological scores and brain water content were measured to evaluate brain injury. Measurement of iron ion, malondialdehyde (MDA), lipid reactive oxygen species was conducted for ferroptosis evaluation. Immunofluorescence staining, western blotting, and flow cytometry analysis were used to evaluate autophagy and apoptosis. First, we observed that, compared with sham rats, SAH rats had lower neurobehavioral scores. Next, baicalin was proven to decrease the Fe2+, malondialdehyde, and ROS levels in the brain tissues of rats. Also, baicalin was confirmed to suppress the beclin1, LC3-II, and LC3-I protein levels in rat brain tissues. Moreover, we found that baicalin inhibited neuronal apoptosis. Finally, the effects of baicalin on brain injury in the SAH rats were verified. Overall, our results demonstrated that baicalin suppressed autophagy-dependent ferroptosis in EBI after SAH.


Asunto(s)
Autofagia/efectos de los fármacos , Lesiones Encefálicas , Ferroptosis/efectos de los fármacos , Flavonoides/farmacología , Hemorragia Subaracnoidea , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Masculino , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA