RESUMEN
In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)-modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different hydraulic retention times (HRTs) and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% total nitrogen (TN) molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.
Asunto(s)
Biopelículas , Reactores Biológicos , Desnitrificación , Electrodos , Grafito , Eliminación de Residuos Líquidos , Aguas Residuales , Grafito/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Nitrógeno/química , Purificación del Agua/métodosRESUMEN
Peracetic acid (PAA) is an alternative disinfectant for saline wastewaters, and hypohalous acids are typically regarded as the reactive species for oxidation and disinfection. However, new results herein strongly suggest that reactive radicals instead of HOI primarily contributed to decontamination during PAA treatment of iodine-containing wastewater. The presence of I- could greatly accelerate the micropollutants (e.g., sulfamethoxazole (SMX)) transformation by PAA. Chemical probes experiments and electron paramagnetic resonance analysis demonstrate acetylperoxyl radical rather than reactive iodine species primarily responsible for SMX degradation. The kinetic model was developed to further distinguish and quantify the contribution of radicals and iodine species, as well as to elucidate the transformation pathways of iodine species. Density functional theory calculations indicated that the nucleophilic attack of I- on the peroxide bond of PAA could form unstable O-I bond, with the transition state energy barrier for radical generation lower than that for HOI formation. The transformation of iodine species was regulated by acetylperoxyl radical to generate nontoxic IO3-, greatly alleviating the iodinated DBPs formation in saline wastewaters. This work provides mechanistic insights in radical-regulated iodine species transformation during PAA oxidation, paving the way for the development of viable and eco-friendly technology for iodide containing water treatment.
Asunto(s)
Yodatos , Yoduros , Oxidación-Reducción , Ácido Peracético , Ácido Peracético/química , Yodatos/química , Yoduros/química , Contaminantes Químicos del Agua/química , Descontaminación/métodos , Aguas Residuales/química , Cinética , Purificación del Agua/métodosRESUMEN
The practical application of Cu(II)-catalyzed Fenton-like reaction (Cu(II)/H2O2) exhibits a low efficiency in the degradation of refractory compounds of wastewater. The impact of chloride ions (Cl-) on Fenton-like reactions have been investigated, but the influence mechanism is still unclear. Herein, the presence of Cl- (5 mM) significantly accelerated the degradation of benzoic acid (BA) under neutral conditions. The degradation of BA follows pseudo-first-order kinetics, with a degradation rate 7.3 times higher than the Cu(II)/H2O2 system. Multiple evidences strongly demonstrated that this reaction enables the production of reactive chlorine species (RCS) rather than HO⢠and high-valent copper (Cu(III)). The kinetic model revealed that Cl- could shift reactive species from the key intermediate (Cu(III)-chloro complexes) to RCS. Dichlorine radicals (Cl2â¢-) was discovered to play a crucial role in BA degradation, which was largely overlooked in previous reports. Although the reaction rate of Cl2â¢- with BA (k = 2.0 × 106 M-1 s-1) is lower than that of other species, its concentration is 10 orders of magnitude higher than that of Cu(III) and HOâ¢. Furthermore, the exceptional efficacy of the Cu(II)/H2O2 system in BA degradation was observed in saline aquatic environments. This work sheds light on the previously unrecognized role of the metal-chloro complexes in production the RCS and water purification.
Asunto(s)
Cloruros , Cloro , Cobre , Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Cobre/química , Peróxido de Hidrógeno/química , Catálisis , Cloro/química , Cloruros/química , Contaminantes Químicos del Agua/química , Hierro/química , Cinética , Ácido Benzoico/química , Aguas Residuales/químicaRESUMEN
Precious metal nanoparticles have been widely investigated due to their excellent activity shown in catalysis and sensing. However, how to prepare highly dispersed noble metal nanoparticles to improve the lifetime of catalysts and reduce the cost is still an urgent problem to be solved. In this study, a carbon-based carrier material was prepared by an expansion method and loaded with Pd or Ag nanoparticles on this carbon material to synthesize precious metal nanoparticle composites, which were characterized in detail. The results show that the nanoparticles prepared using this method exhibit superior dispersion. Under the synergistic effect of noble metal nanoparticles and porous carbon carriers, the composites exhibited excellent catalytic degradation of p-nitrophenol and showed excellent sensing performance in the modified hydrogen peroxide sensor electrode. This approach is highly informative for the preparation of nanocomposites in medical and environmental fields.
RESUMEN
Youth offer valuable insight on health communication needs and solutions in their communities. We propose youth participatory action communication research (YPACR) as a model for health campaign development that engages youth perspectives in applying systematic theory-informed communication research to addressing youth-identified health priorities. YPACR informed a series of paid high school internship programs in West Philadelphia, in which youth interns identified mental health help-seeking communication as a need among peers. In Phase 1, guided by the reasoned action approach and Hornik & Woolf method, youth interns conducted a survey measuring behavioral beliefs, normative beliefs, and control beliefs associated with mental health help-seeking, as well as trusted sources of mental health information, among local high school students. Survey results suggested control (self-efficacy) was an important message target and peers were trusted mental health information sources. In Phase 2, youth interns developed TikTok-style messages focused on strengthening control beliefs and promoting a youth-selected mental health support resource. Youth interns distributed an online survey experiment to test whether youth-created messages shown alongside resource information increased help-seeking self-efficacy compared to an information-only control. The YPACR framework contributed to youth-relevant campaign goals, study measurements, recruitment approaches, data interpretation, and message design. We discuss the benefits and challenges of this youth-driven health campaign development model and recommendations for future research.
RESUMEN
Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(â ¦) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(â ¦) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(â ¤/â ¥) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.
Asunto(s)
Compuestos de Manganeso , Manganeso , Oxidación-Reducción , Óxidos , Ácido Peracético , Ácido Peracético/química , Manganeso/química , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/químicaRESUMEN
Membrane distillation (MD) equipped with omniphobic (non-wetting) membranes has found a niche in water reclamation from hypersaline industrial wastewater. Here, we examined the efficacy of non-fluorinated materials as surface coating agents for omniphobic MD membrane fabrication, and identified necessary mechanisms to attain a maximized wetting resistance using fluorine-free materials. We first prepared MD membranes with different surface chemistries using a series of linear alkylsilanes and polydimethylsiloxane (PDMS) as representative fluorine-free, low surface energy materials. Membranes modified with a longer chain alkylsilane exhibited a lower surface energy and demonstrated a greater wetting resistance in direct contact MD experiments using feedwaters of various surface tensions. Despite the nearly identical surface energy measured for the longest alkylsilane and PDMS, PDMS-modified membrane exhibited an extended antiwetting performance as compared to the membrane treated with the longest alkylsilane. To elucidate the source of the distinctive wetting resistance, we examined the nucleation and condensation kinetics on the surfaces with the different surface chemistries via environmental scanning electron microscopy. Our analysis suggests that the membranes treated with long chain alkylsilanes contain surface defects (i.e., hydrophilic regions) whereas the high mobility of the PDMS effectively minimizes the defect exposure, slowing down the condensation and subsequent surface wetting.
Asunto(s)
Aguas Residuales , Purificación del Agua , Humectabilidad , Aguas Residuales/química , Purificación del Agua/métodos , Dimetilpolisiloxanos/química , Flúor/química , Solución Salina/química , Interacciones Hidrofóbicas e Hidrofílicas , DestilaciónRESUMEN
OBJECTIVE: To construct the complementary food texture in infants and young children aged 6 to 23 months, and observe the acceptability of complementary food of different months old infants. METHODS: Based on the domestic and foreign guidelines, consensus and literatures on complementary feeding, and combined with the characteristics of children's growth and development in China. The complementary food texture index of 6-23 months old infants and young children was constructed. One province was selected in the south and north respectively, one city and one rural area was selected as the observation point in each province. The stratified random sampling principle was adopted in each observation point, 240 infants and young children were selected for the acceptability study. According to the food type, 12 common foods were selected to make the complementary food toolkit. The parents were instructed to make complementary food at home according to the corresponding month age, observe and record the acceptability of single/mixed complementary food feeding. RESULTS: The complementary food texture index of 6 months, 7-8 months, 9-11 months, 12-17 months, 18-23 months was constructed. Caregivers could make complementary food at the corresponding month age according to the established complementary food texture index. The acceptability of single complementary food for infants and young children aged 6-23 months was 98.3%, 98.7%, 99.8%, 96.9% and 97.5%, respectively. The acceptability of mixed complementary food for children aged 7-23 months was 98.3%, 99.6%, 93.8% and 97.5%, respectively. CONCLUSION: The complementary food texture index of different month age can be made at home, and the acceptability of different texture is good.
Asunto(s)
Alimentos Infantiles , Fenómenos Fisiológicos Nutricionales del Lactante , Lactante , Humanos , Masculino , Femenino , China , Preferencias AlimentariasRESUMEN
Hyperthermophilic composting (HTC) is a recently developed and highly promising organic fraction of municipal solid waste (OFMSW) treatment technology. Investigation of organic matter (OM) dynamics in compost particle is thus crucial for the understanding of humification of HTC process. Herein, this work aimed to study the chemical and structural changes of OM at the molecular level during HTC of OFMSW using EEM and SR-FTIR analyses. Additionally, two-dimensional correlation spectroscopy (2D-COS) was also utilized to probe and identify the changes in chemical constituents and functional groups of organic compounds on the surface of compost particles during different composting periods. Results show that SR-FTIR can detect fine-scale (~µm) changes in functional groups from the edges to the interior of compost particles during different composting periods by mapping the particles in situ. In the hyperthermophilic stage (day 9), the extracted µ-FTIR spectrum reveals a distinct boundary between anaerobic and aerobic regions within the compost particle, with a thickness of anaerobic zone (1460 cm-1) of approximately 30 µm inside the particle's core. This provides direct evidence of anaerobic trends at compost microscales level within compost particles. 2D-COS analysis indicated that organic functional groups gradually agglomerated in the order of 1330 > 2930 > 3320 > 1600 > 1030 > 895 cm-1 to the core skeleton of cellulose degradation residues, forming compost aggregates with well physicochemical properties. Overall, the first combination of SR-FTIR and EEM provides complementary explanations for the humification mechanism of HTC, potentially introducing a novel methodology for investigating the environmental behaviors and fates of various organic contaminants associated with OM during the in-situ composting biochemical process.
Asunto(s)
Compostaje , Compostaje/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Suelo/química , Monitoreo del Ambiente/métodosRESUMEN
Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.
Asunto(s)
Irinotecán , Micelas , Profármacos , Animales , Profármacos/administración & dosificación , Profármacos/química , Profármacos/farmacología , Humanos , Irinotecán/administración & dosificación , Irinotecán/farmacocinética , Línea Celular Tumoral , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Polímeros/química , Femenino , Ratones Endogámicos BALB C , Polietilenglicoles/química , Sulfóxidos , Ratones , Intestinos/efectos de los fármacos , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Portadores de Fármacos/químicaRESUMEN
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Restauración y Remediación Ambiental/métodos , Suelo/químicaRESUMEN
The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37 versus -24.88) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.
Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Poliestirenos , Tenebrio , Animales , Microplásticos/metabolismo , Tenebrio/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Microbioma GastrointestinalRESUMEN
The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.
Asunto(s)
Chlorella , Microalgas , Microplásticos , Fotosíntesis , Fotosíntesis/efectos de los fármacos , Chlorella/efectos de los fármacos , Microalgas/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Biomasa , Clorofila/metabolismoRESUMEN
It has recently been discovered that HFPO-TA (a processing aid in the production of fluoropolymers) has high levels of bioaccumulation and biotoxicity. Hydrated electrons (eaq-) have been proposed to be potent nucleophiles that may decompose PFAS. Unlike previous studies in which the generation of eaq- was often restricted to anaerobic or highly alkaline environments, in this study, we applied the UV/SO32-/I- process under mild conditions of neutrality, low source chemical demand, and open-air, which achieved effective degradation (81.92 %, 0.834 h-1) and defluorination (48.99 %, 0.312 h-1) of HFPO-TA. With I- as the primary source of eaq-, SO32- acting as an I- regenerator and oxidizing substances scavenger, UV/SO32-/I- outperformed others under mild circumstances. The eaq- were identified as the main active species by quenching experiments and electron paramagnetic resonance (EPR). During degradation, the first site attacked by eaq- was the ether bond (C6-O7), followed by the generation of HFPO-DA, TFA, acetic and formic acid. Degradation studies of other HFPOs have shown that the defluorination of HFPOs was accompanied by a clear chain-length correlation. At last, toxicological experiments confirmed the safety of the process. This study updated our understanding of the degradation of newly PFASs and the application of eaq- mediated photoreductive approaches under mild conditions.
Asunto(s)
Rayos Ultravioleta , Yoduros/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , HalogenaciónRESUMEN
The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.
Asunto(s)
Biomasa , Microondas , Pirólisis , Proteínas/química , Lípidos/química , Carbón Orgánico/química , Carbohidratos/química , BiocombustiblesRESUMEN
Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.
Asunto(s)
Trampas Extracelulares , Neutrófilos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Animales , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Humanos , Adherencias Tisulares/prevención & control , Línea Celular Tumoral , Recurrencia Local de Neoplasia/prevención & control , Incrustaciones Biológicas/prevención & control , Polímeros/química , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/prevención & control , Metástasis de la Neoplasia/prevención & control , Adhesión Celular/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacologíaRESUMEN
Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.
Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Compuestos Orgánicos/análisis , ChinaRESUMEN
BACKGROUND: To date, there is no standardized practice for the use of pharmacological sedatives during flexible bronchoscopy, particularly for elderly patients. This exploratory study aimed to assess the efficacy and safety of remimazolam at a single induced dose for deep sedation in elderly patients undergoing diagnostic flexible bronchoscopy (DFB), and compare with midazolam, a commonly used sedative. METHODS: A total of 100 elderly patients (age range 65-80 yr; American Society of Anesthesiologists Physical Status I-III) undergoing DFB were randomly allocated into 2 groups according to the sedatives used for induction: the remimazolam group and the midazolam group. Sedation induction was initiated by an intravenous bolus of remimazolam (0.135 mg/kg) or midazolam (0.045 mg/kg), respectively, both groups were combined with a high-dose of alfentanil (18 µg/kg), and supplemented with high-flow nasal cannula (HFNC) oxygen supply at a flow rate of 45 L/min. If the target depth of sedation was not achieved, propofol would be titrated as a rescue. The primary outcome was the success rate of sedation at a single induced dose to achieve target depth (Ramsay sedation score [RSS]â =â 4) during induction, intraoperative changes in vital signs, postoperative follow-up situation and incidence of post-bronchoscopy adverse events were evaluated as secondary outcomes. RESULTS: The success rate of sedation in the remimazolam group was significantly higher than that in the midazolam group (65.2% vs 39.6%, Pâ =â .013), while the incidence of extra sleep within 6 hours after procedure was lower in the remimazolam group as compared to the midazolam group (10.9% vs 31.3%, Pâ =â .016). No statistically significant differences were observed between the 2 groups regarding hemodynamic fluctuations, incidence of hypoxemia, and cough response during the procedure, as well as postoperative recall, willingness to undergo reexamination, and other post-bronchoscopy adverse events. CONCLUSIONS: Bolus administration of remimazolam offers advantages over midazolam for deep sedation in elderly patients undergoing DFB, in terms of a higher success rate of sedation and a lower incidence of extra sleep within 6 hours after procedure, though the safety profiles of both groups were favorable.
Asunto(s)
Sedación Profunda , Propofol , Humanos , Anciano , Anciano de 80 o más Años , Midazolam , Broncoscopía/métodos , Benzodiazepinas , Hipnóticos y Sedantes/uso terapéutico , Método Doble CiegoRESUMEN
UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.
Asunto(s)
Antibacterianos , Ácido Peracético , Rayos Ultravioleta , Aguas Residuales , Antibacterianos/farmacología , Antibacterianos/química , Ácido Peracético/farmacología , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos/efectos de los fármacos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de la radiación , Desinfección/métodos , Biodegradación AmbientalRESUMEN
Immunotherapy targeting PD-L1 is still ineffective for a wide variety of tumors with high unpredictability. Deploying combined immunotherapy with alternative targeting is practical to overcome this therapeutic resistance. Here, the deficiency of serine-threonine kinase STK24 is observed in tumor cells causing substantial attenuation of tumor growth in murine syngeneic models, a process relying on cytotoxic CD8+ T and NK cells. Mechanistically, STK24 in tumor cells associates with and directly phosphorylates AKT at Thr21, which promotes AKT activation and subsequent PD-L1 induction. Deletion or inhibition of STK24, by contrast, blocks IFN-γ-mediated PD-L1 expression. Various murine models indicate that in vivo silencing of STK24 can significantly enhance the efficacy of the anti-PD-1 blockade strategy. Elevated STK24 levels are observed in patient specimens in multiple tumor types and inversely correlated with intratumoral infiltration of cytotoxic CD8+ T cells and with patient survival. The study collectively identifies STK24 as a critical modulator of antitumor immunity, which engages in AKT and PD-L1/PD-1 signaling and is a promising target for combined immunotherapy.