Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Anim Nutr ; 18: 419-432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309969

RESUMEN

Intestine derived lipopolysaccharide (LPS) is closely related to systemic inflammation and disorders, yet little is known about its roles in the weanling stress of piglets and its potential as a nutritional intervention target. This study aimed to investigate the potential of essential oils (EO) and organic acids (OA) in mitigating weaning stress in piglets by modulating the circulation of intestine derived LPS. Seventy-two weaned piglets at 21 d old with body weight of 8.12 ± 0.168 kg were randomly divided into a control group (CON) and an experimental group, each consisting of six pens with six piglets per pen, and were fed either a basal diet or a basal diet supplemented with 3 kg/t OA + 500 g/t EO (EO + OA). On the 14th day of the feeding trial, 12 weaned piglets were randomly selected from the CON group, and 6 piglets were selected from the experimental group. Based on diet composition and stress treatment, these 18 piglets were divided into the following three groups: 1) CON group. Piglets were fed a basal diet and received an intraperitoneal injection of saline as a control. 2) LPS group. Piglets were fed a basal diet and received an intraperitoneal injection of LPS (100 µg/kg body weight) to induce stress. 3) EO + OA + LPS group. Piglets were fed a basal diet supplemented with EO and OA and received an intraperitoneal injection of LPS (100 µg/kg body weight) to induce stress. The results showed that EO + OA significantly ameliorated the oxidative imbalance and inflammation disorder induced by LPS in piglets' serum and intestine by inhibiting the activation of the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, compared to the LPS group, supplementation with EO + OA restored LPS-induced reductions in Bcl-2 protein expression in the piglets' intestines (P < 0.05) and mitigated morphological damage; it also enhanced both the protein expression and relative gene expression of the tight junction proteins occludin and claudin-1 (P < 0.05), and reduced the plasma diamine oxidase activity (DAO) and LPS content (P < 0.05). Compared to the CON group, supplementation with EO + OA altered the composition of the intestinal microbiota, increasing beneficial bacteria relative abundance (Faecalibacterium) (P < 0.05) and decreasing harmful bacteria relative abundance [Rikenellaceae_RC9_gut_group (P < 0.01), Negativibacillus (P < 0.05)]. Further analysis revealed that plasma LPS content in piglets was negatively correlated with the relative abundance of Faecalibacterium (r = -0.662, P = 0.021), Akkermansia (r = -0.492, P = 0.031), and average daily gain (ADG) (r = -0.912, P = 0.041). Plasma LPS content was also positively correlated with the plasma inflammatory factors interleukin (IL)-1ß (r = 0.591, P = 0.021), IL-6 (r = 0.623, P = 0.021), IL-12 (r = 561, P = 0.031) contents, and the relative abundance of Negativibacillus (r = 0.712, P = 0.041). In summary, the addition of EO + OA prevents the leakage of intestine derived LPS into the circulation by improving intestinal integrity and microbiota composition, thereby enhancing antioxidant and anti-inflammatory abilities and growth performance of weaned piglets.

2.
Sci Rep ; 14(1): 20875, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242766

RESUMEN

In intensive care unit (ICU) patients undergoing mechanical ventilation (MV), the occurrence of difficult weaning contributes to increased ventilator-related complications, prolonged hospitalization duration, and a significant rise in healthcare costs. Therefore, early identification of influencing factors and prediction of patients at risk of difficult weaning can facilitate early intervention and preventive measures. This study aimed to strengthen airway management for ICU patients by constructing a risk prediction model with comprehensive and individualized offline programs based on machine learning techniques. This study involved the collection of data from 487 patients undergoing MV in the ICU, with a total of 36 variables recorded. The dataset was divided into a training set (70% of the data) and a test set (30% of the data). Five machine learning models, namely logistic regression, random forest, support vector machine, light gradient boosting machine, and extreme gradient boosting, were compared to predict the risk of difficult weaning in ICU patients with MV. Significant influencing factors were identified based on the results of these models, and a risk prediction model for ICU patients with MV was established. When evaluating the models using AUC (Area under the Curve of ROC) and Accuracy as performance metrics, the Random Forest algorithm exhibited the best performance among the five machine learning algorithms. The area under the operating characteristic curve for the subjects was 0.805, with an accuracy of 0.748, recall (0.888), specificity (0.767) and F1 score (0.825). This study successfully developed a risk prediction model for ICU patients with MV using a machine learning algorithm. The Random Forest algorithm demonstrated the highest prediction performance. These findings can assist clinicians in accurately assessing the risk of difficult weaning in patients and formulating effective individualized treatment plans. Ultimately, this can help reduce the risk of difficult weaning and improve the quality of life for patients.


Asunto(s)
Unidades de Cuidados Intensivos , Aprendizaje Automático , Respiración Artificial , Desconexión del Ventilador , Humanos , Desconexión del Ventilador/métodos , Masculino , Femenino , Persona de Mediana Edad , Respiración Artificial/métodos , Anciano , Medición de Riesgo/métodos , Curva ROC , Factores de Riesgo
3.
Anal Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024185

RESUMEN

Precise and reliable monitoring of DNA adenine methyltransferase (Dam) activity is essential for disease diagnosis and biological analysis. However, existing techniques for detecting Dam activity often rely on specific DNA recognition probes that are susceptible to DNA degradation and exhibit limited target sensitivity and specificity. In this study, we designed and engineered a stable and dynamic DNA nanodevice called the double-loop interlocked DNA circuit (DOOR) that enables the sensitive and selective monitoring of Dam activity in complex biological environments. The DOOR incorporates two interlocked specialized sequences: a palindromic sequence for Dam identification and an initiator sequence for signal amplification. In the presence of Dam, the DOOR is cleaved by double-stranded DNA phosphodiesterase I endonuclease, generating massive double-stranded DNA (dsDNA) units. These units can self-assemble into a long dsDNA scaffold, thereby enhancing the subsequent reaction kinetics. The dsDNA scaffold further triggers a hyperbranched hybrid chain reaction to produce a fluorescent 3D DNA nanonet, enabling more precise monitoring of the Dam activity. The DOOR device exhibits excellent sensitivity, specificity, and stability, rendering it a powerful tool for studying DNA methylation in various biological processes and diseases.

4.
Front Med (Lausanne) ; 11: 1406149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962743

RESUMEN

Background: Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive. Purpose: This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches. Methods: Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology. Results: Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. Conclusion: This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.

5.
Anal Chem ; 96(28): 11383-11389, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946419

RESUMEN

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.


Asunto(s)
Técnicas Biosensibles , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Técnicas Electroquímicas , Mediciones Luminiscentes , Nanopartículas del Metal , Plata , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/análisis , Plata/química , Humanos , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/química , Límite de Detección , ADN Catalítico/química , ADN Catalítico/metabolismo
6.
Food Chem ; 458: 140202, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38954955

RESUMEN

Traditional DNA walkers face enormous challenges due to limited biostability and reaction kinetics. Herein, we designed a self-driven close-looped DNAzyme walker (cl-DW) with high structural biostability and catalytic activity that enabled rapid electrochemiluminescence (ECL) detection of pesticide residue acetamiprid. Specifically, cl-DW exhibited increasing ability to resist nuclease degradation with a 570-fold longer half-degradation time than that of the single-stranded DNAzyme walker (ss-DW) due to the protected DNA terminal. Furthermore, cl-DW achieved high catalytic activity with a 4.3-fold faster reaction kinetic than that of ss-DW due to the circularized nanostructure of an available catalytic domain. Consequently, we utilized cl-DW as a signal amplifier and tin-based sulfide (SnS2) nanoflowers as ECL emitters to construct an ECL aptasensor, which realized the sensitive detection of acetamiprid with a limit of detection of 0.85 nM. This work provides a reliable approach to exploring DNA walkers with high catalytic activity and better biostability for molecular monitoring.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , Mediciones Luminiscentes , Neonicotinoides , Neonicotinoides/química , Neonicotinoides/análisis , ADN Catalítico/química , Mediciones Luminiscentes/métodos , Dominio Catalítico , Límite de Detección , Residuos de Plaguicidas/química , Residuos de Plaguicidas/análisis , Aptámeros de Nucleótidos/química
7.
J Ethnopharmacol ; 335: 118641, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39084273

RESUMEN

As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.


Asunto(s)
Retinopatía Diabética , Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Animales
8.
Chem Commun (Camb) ; 60(50): 6415-6418, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38828655

RESUMEN

Ultrafine iridium particles anchored on nitrogen-doped CNTs were obtained from Ir(ppy)3 and CNTs using a simple annealing method and acted as highly efficient bifunctional oxygen catalysts for Zn-air batteries. A synergistic effect, efficient *OH adsorption and rapid *OOH deprotonation were demonstrated from in situ FTIR spectroscopy, EIS and activation energy measurements.

9.
Health Expect ; 27(2): e14048, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606474

RESUMEN

BACKGROUND: Cancer threat is relevant to age, and the threat of a foreshortened life coupled with a lengthy treatment process negatively affects middle-aged and older adults. Understanding the coping throughout the cancer experience in middle-aged and older cancer survivors will help develop supportive care to promote their physiological and psychological coping effects. OBJECTIVES: To explore the cancer coping experiences of middle-aged adults aged 40-59 and older adults over 60. DESIGN: A descriptive phenomenological study was employed. METHODS: Face-to-face, in-depth, semistructured interviews were conducted with 22 oncology patients in a tertiary university hospital aged 40 or above from August to October 2023. The interview data were analyzed using thematic analysis procedures. RESULTS: Five themes and 13 subthemes were formed through analysis: acceptance of cancer (considering cancer as chronic, believing in fate and attributing cancer to karma); having different information needs (desired to be truthfully informed, information-seeking behaviour, information avoidance behaviour); getting families involved (developing dependent behaviours, feeling emotional support, family members suffering worse); striving to maintain positive psychological state (positive thinking, seeking peer support) and negative experience (undesirable, low self-esteem). CONCLUSION: Our study reveals that cancer survivors' attitudes towards having cancer have changed from a death sentence to a more positive perception of a chronic disease. Supportive programmes for developing coping strategies should consider the cultural traditions and religious beliefs, different information needs, involvement of family and promoting a positive psychological state while avoiding negative factors. PATIENT OR PUBLIC CONTRIBUTION: Participants with experience of coping with cancer were involved in the semistructured interview.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Persona de Mediana Edad , Humanos , Anciano , Adaptación Psicológica , Emociones , Habilidades de Afrontamiento , Investigación Cualitativa , Neoplasias/terapia
10.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574739

RESUMEN

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Humanos , Animales , Anticuerpos Monoclonales/inmunología , SARS-CoV-2/inmunología , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/prevención & control , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Masculino , Sueros Inmunes/inmunología , Adulto , Evasión Inmune , Pruebas de Neutralización , Epítopos/inmunología
11.
ACS Nano ; 18(17): 11200-11216, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38620102

RESUMEN

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.


Asunto(s)
Administración Intranasal , Hidrogeles , Inmunidad Mucosa , Mucosa Nasal , Animales , Hidrogeles/química , Ratones , Inmunidad Mucosa/efectos de los fármacos , Mucosa Nasal/inmunología , Ratones Endogámicos BALB C , Femenino , Humanos , Ratones Endogámicos C57BL
12.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559446

RESUMEN

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Otitis Media , Infecciones Estafilocócicas , Óxido de Zinc , Humanos , Staphylococcus aureus , Radical Hidroxilo , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Otitis Media/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química
13.
Front Public Health ; 12: 1365828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510357

RESUMEN

Objective: Exploring the mechanism of ferroptosis as a potential avenue for investigating the pathogenesis and therapeutic outlook of diabetes mellitus and its complications has emerged as a focal point within recent years. Herein, we employ a bibliometric approach to delineate the current landscape of ferroptosis research in the context of diabetes mellitus. Our objective is to furnish insights and scholarly references conducive to the advancement of comprehensive investigations and innovations in related domains. Methods: We included studies on ferroptosis in diabetes, obtained from the Web of Science Core Collection. All publications were transported in plaintext full-record format and were analyzed by CiteSpace 6.2.R4 for bibliometric analysis. Results: Four hundred and forty-eight records that met the criteria were included. The publications released during the initial 3 years were relatively small, while there was a sudden surge of publications published in 2022 and 2023. Representing 41 countries and 173 institutions, China and Wuhan University led the research on ferroptosis in diabetes. The author with the highest number of published papers is Zhongming Wu, while Dixon SJ is the most frequently cited author. The journal with the highest number of co-citations is Cell. The most common keywords include oxidative stress, cell death, lipid peroxidation, and metabolism. Extracted keywords predominantly focus on NLRP3 inflammatory, diabetic kidney disease, mitochondria, iron overload, and cardiomyopathy. Conclusion: The escalating recognition of ferroptosis as a potential therapeutic target for deciphering the intricate mechanisms underlying diabetes and its complications is underscored by a noteworthy surge in relevant research publications. This surge has catapulted ferroptosis into the spotlight as a burgeoning and vibrant research focus within the field.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Humanos , Bibliometría , China , Mitocondrias
14.
Small ; 20(31): e2310191, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38431965

RESUMEN

Wearable heaters with multifunctional performances are urgently required for the future personal health management. However, it is still challengeable to fabricate multifunctional wearable heaters simultaneously with flexibility, air-permeability, Joule heating performance, electromagnetic shielding property, and anti-bacterial ability. Herein, silver nanoparticles (AgNPs)@MXene heterostructure-decorated graphite felts are fabricated by introducing MXene nanosheets onto the graphite felts via a simple dip-coating method and followed by a facile in situ growth approach to grow AgNPs on MXene layers. The obtained AgNPs@MXene heterostructure decorated graphite felts not only maintain the intrinsic flexibility, air-permeability and comfort characteristics of the matrixes, but also present excellent Joule heating performance including wide temperature range (30-128 °C), safe operating conditions (0.9-2.7 V), and rapid thermal response (reaching 128 °C within 100 s at 2.7 V). Besides, the multifunctional graphite felts exhibit excellent electromagnetic shielding effectiveness (53 dB) and outstanding anti-bacterial performances (>95% anti-bacterial rate toward Bacillus subtilis, Escherichia coli and Staphy-lococcus aureus). This work sheds light on a novel avenue to fabricate multifunctional wearable heaters for personal healthcare and personal thermal management.


Asunto(s)
Antibacterianos , Grafito , Nanopartículas del Metal , Plata , Dispositivos Electrónicos Vestibles , Grafito/química , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos
15.
Nanoscale ; 16(14): 7167-7184, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38504613

RESUMEN

Antibacterial properties and osteogenic activity are considered as two crucial factors for the initial healing and long-term survivability of orthopedic implants. For decades, various drug-loaded implants to enhance biological activities have been investigated extensively. More importantly, to control the drug release timing is equally significant due to the sequential biological processes after implantation. Hence, developing a staged regulation system on the titanium surface is practically significant. Here, we prepared TiO2 nanotubes (TiO2 NTs) on the titanium surface by anodization, followed by the incorporation of zinc (Zn) and strontium (Sr) sequentially through a hydrothermal process. Surface characterization confirmed the successful fabrication of Zn and Sr-incorporated TiO2 NTs (Zn-Sr/TiO2) on the titanium surface. The ion release results exhibited the differential release characteristic of Zn and Sr, which meant the early-stage release of Zn and the long-term release of Sr. It was exactly in accord with  the biological process after implantation, laying the basis of staged regulation after implantation. Zn-Sr/TiO2 showed favorable anti-early infection properties both in vitro and in vivo. Its inhibition effect on bacterial biofilm formation was attributed to the resistance against bacteria's initial adhesion and the killing effect on planktonic bacteria. Additionally, the release of Sr could alleviate infection-induced damage via immunoregulation. The biocompatibility and osteogenic activity mediated by M2 macrophage activation were confirmed with in vitro and in vivo studies. Therefore, it exhibited great potential in staged regulation for antibacterial activity in the early stage and the M2 activation-mediated osteogenic activity in the late stage. The staged regulation process was based on the differential release of Zn and Sr to achieve the early antibacterial effect and the long-term immune-induced osteogenic activity, to prevent implant-related infection and achieve better osseointegration. These two kinds of ions played their roles synergistically and complement mutually. This work is expected to provide an innovative idea for realizing sequential regulation after implantation.


Asunto(s)
Osteogénesis , Titanio , Titanio/farmacología , Antibacterianos/farmacología , Prótesis e Implantes , Oseointegración , Bacterias , Iones , Propiedades de Superficie , Estroncio/farmacología
16.
J Colloid Interface Sci ; 665: 204-218, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522160

RESUMEN

Upcycle polyethylene terephthalate (PET) waste by photoreforming (PR) is a sustainable and green approach to tackle environmental problems but with challenges to obtain valuable oxidation products and high purity hydrogen simultaneously. Noble metal cocatalysts are essential to enhance the overall PR reaction efficacy. In this work, TiO2 nanotubes (TiO2 NTs) decorated with single Pt atoms (Pt1/TiO2) or Pt nanoparticles (PtNPs/TiO2) are used in the photoreforming reaction (in one batch), and the oxidation products from ethylene glycol (EG, hydrolysed product of PET) in liquid phase and hydrogen are detected. With Pt1/TiO2, EG is oxidized to glyoxal, glyoxylate or lactate, and hydrogen evolution rate (r H2) reaches 51.8 µmol⋅h-1⋅gcat-1, that is 30 times higher than that of TiO2. For PtNPs/TiO2 (size of Pt NPs: 1.97 nm), hydrogen evolution reaches 219.1 µmol⋅h-1⋅gcat-1, but with the oxidation product of acetate only. DFT calculation demonstrates that for Pt NPs, the reaction path for hydrogen evolution is preferred thermodynamically, due to the formation of Schottky junction. On the oxidation of EG, theoretical and spectroscopic analysis suggest that bidentate adsorption of EG at the interface is facile on Pt1/TiO2, compared to that on PtNPs/TiO2 (two Pt sites), but oxidation products, adsorb less strongly, compared to PtNPs/TiO2, that eventually regulates the distribution of oxidation products. The results thus demonstrate the bifunctions of Pt in the PR reaction, i.e., electron transfer mediator for hydrogen evolution and reactive sites for molecules adsorption. The oxidation reaction is dominated by the adsorption-desorption behavior of molecules but the reduction reaction is controlled by the electron transfer. In addition, acidification of pretreated PET alkaline solution achieves separation of pure terephthalic acid (PTA), which further improves the reaction efficiency possibly by offering high density of active sites and acidic environment. Our work thus demonstrates that to upcycle PET plastics, an optimized process can be reached by atomic design of photocatalysts and proper treatment on the plastic wastes.

17.
Small ; 20(30): e2311336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38385851

RESUMEN

The electrocatalytic conversion of nitrate (NO3 -) to NH3 (NO3RR) at ambient conditions offers a promising alternative to the Haber-Bosch process. The pivotal factors in optimizing the proficient conversion of NO3 - into NH3 include enhancing the adsorption capabilities of the intermediates on the catalyst surface and expediting the hydrogenation steps. Herein, the Cu/Cu2O/Pi NWs catalyst is designed based on the directed-evolution strategy to achieve an efficient reduction of NO3‾. Benefiting from the synergistic effect of the OV-enriched Cu2O phase developed during the directed-evolution process and the pristine Cu phase, the catalyst exhibits improved adsorption performance for diverse NO3RR intermediates. Additionally, the phosphate group anchored on the catalyst's surface during the directed-evolution process facilitates water electrolysis, thereby generating Hads on the catalyst surface and promoting the hydrogenation step of NO3RR. As a result, the Cu/Cu2O/Pi NWs catalyst shows an excellent FE for NH3 (96.6%) and super-high NH3 yield rate of 1.2 mol h-1 gcat. -1 in 1 m KOH and 0.1 m KNO3 solution at -0.5 V versus RHE. Moreover, the catalyst's stability is enhanced by the stabilizing influence of the phosphate group on the Cu2O phase. This work highlights the promise of a directed-evolution approach in designing catalysts for NO3RR.

18.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397844

RESUMEN

This study aimed to evaluate the effects of a complex comprising formic acid, benzoic acid, and essential oils (AO3) on the growth performance of weaned piglets and explore the underlying mechanism. Dietary AO3 supplementation significantly enhanced the average daily gain (ADG) and average daily feed intake (ADFI), while decreasing the feed conversion rate (FCR) and diarrhea rate (p < 0.05). Additionally, AO3 addition altered the fecal microflora composition with increased abundance of f_Prevotellaceae. LPS challenges were further conducted to investigate the detailed mechanism underlying the benefits of AO3 supplementation. The piglets fed with AO3 exhibited a significant increase in villus height and decrease in crypt depth within the jejunum, along with upregulation of ZO-1, occludin, and claudin-1 (p < 0.05) compared with those piglets subjected to LPS. Furthermore, AO3 supplementation significantly ameliorated redox disturbances (T-AOC, SOD, and GSH) and inflammation (TNF-α, IL-1ß, IL-6, and IL-12) in both the serum and jejunum of piglets induced by LPS, accompanied by suppressed activation of the MAPK signaling pathway (ERK, JNK, P38) and NF-κB. The LPS challenge downregulated the activation of the AMPK signaling pathway, mRNA levels of electron transport chain complexes, and key enzymes involved in ATP synthesis, which were significantly restored by the AO3 supplementation. Additionally, AO3 supplementation restored the reduced transport of amino acids, glucose, and fatty acids induced by LPS back to the levels observed in the control group. In conclusion, dietary AO3 supplementation positively affected growth performance and gut microbiota composition, also enhancing intestinal barrier integrity, nutrient uptake, and energy metabolism, as well as alleviating oxidative stress and inflammation under LPS stimulation.

19.
J Mater Chem B ; 12(7): 1798-1815, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38230414

RESUMEN

Biofilms on public devices and medical instruments are harmful. Hence, it is of great importance to fabricate antibacterial surfaces. In this work, we target the preparation of an antibacterial surface excited by near-infrared light via the coating of rare earth nanoparticles (RE NPs) on a titanium surface. The upconverted luminescence is absorbed by gold nanoparticles (Au NPs, absorber) to produce hot electrons and reactive oxygen species to eliminate the biofilms. The key parameters in tuning the upconversion effect to eliminate the biofilms are systematically investigated, which include the ratios of the sensitizer, activator, and matrix in the RE NPs, or the absorber Au NPs. The regulated RE NPs exhibit an upconversion quantum yield of 3.5%. Under illumination, photogenerated electrons flow through the surface to bacteria, such as E. coli, which disrupt the breath chain and eventually lead to the death of bacteria. The mild increase of the local temperature has an impact on the elimination of biofilms on the surface to a certain degree as well. Such a configuration on the surface of titanium exhibits a high reproducibility on the removal of biofilms and is functional after the penetration of light using soft tissue. This work thus provides a novel direction in the application of upconversion materials to be used in the fabrication of antibacterial surfaces.


Asunto(s)
Nanopartículas del Metal , Metales de Tierras Raras , Titanio , Oro , Escherichia coli , Reproducibilidad de los Resultados , Antibacterianos/farmacología , Biopelículas
20.
Adv Mater ; 36(2): e2307756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974525

RESUMEN

Titanium implants are widely used ; however, implantation occasionally fails due to infections during the surgery or poor osseointegration after the surgery. To solve the problem, an intelligent functional surface on titanium implant that can sequentially eradicate bacteria biofilm at the initial period and promote osseointegration at the late period of post-surgery time is designed. Such surfaces can be excited by near infrared light (NIR), with rare earth nanoparticles to upconvert the NIR light to visible range and adsorb by Au nanoparticles, supported by titanium oxide porous film on titanium implants. Under NIR irradiation, the implant converts the energy of phonon to hot electrons and lattice vibrations, while the former flows directly to the contact substance or partially reacts with the surrounding to generate reactive oxygen species, and the latter leads to the local temperature increase. The biofilm or microbes on the implant surface can be eradicated by NIR treatment in vitro and in vivo. Additionally, the surface exhibits superior biocompatibility for cell survival, adhesion, proliferation, and osteogenic differentiation, which provides the foundation for osseointegration. In vivo implantation experiments demonstrate osseointegration is also promoted. This work thus demonstrates NIR-generated electrons can sequentially eradicate biofilms and regulate the osteogenic process, providing new solutions to fabricate efficient implant surfaces.


Asunto(s)
Nanopartículas del Metal , Oseointegración , Oseointegración/fisiología , Osteogénesis , Titanio/farmacología , Oro/farmacología , Antibacterianos/farmacología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...