Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38752639

RESUMEN

BACKGROUND: Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare disease that is characterized by autoinflammatory lesions on both bones and skin. The diverse manifestations and limited understanding of its etiology have hindered the diagnosis and treatment of this condition. SAPHO syndrome is also classified as a primary inflammatory osteitis. The onset of osteoarticular involvement in this disease is typically gradual, and the identification of associated biomarkers may be crucial for accurate diagnosis, effective treatment, and a better understanding of its underlying mechanisms. METHODS: We enrolled a total of 6 SAPHO patients and 3 healthy volunteers for this study. The miRNA expression profile in circulating exosomes was analyzed using next-generation sequencing. A total of 45 miRNAs were found to be differentially expressed in SAPHO patients. Linear discriminant analysis effect size analysis and Wilcoxon rank-sum test were employed to identify biomarkers based on these differentially expressed miRNAs. Among them, we selected 4 miRNAs as biomarkers for SAPHO syndrome, resulting in an area under the receiver operating characteristic curve of 1. RESULTS: The differentially expressed miRNAs indicated enrichment in immune system and endocrine system-related KEGG pathways, as well as infectious diseases and cancers. Furthermore, the most significantly enriched molecular functions in GO analysis were protein binding and catalytic activity. CONCLUSION: The exosomal miRNA profile in SAPHO syndrome exhibited significant changes, suggesting its potential as a candidate biomarker for diagnostic assistance, although further investigation is warranted to elucidate their role in the pathology.

2.
RSC Adv ; 14(20): 13801-13807, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38681838

RESUMEN

Near-infrared red (NIR) fluorescence imaging guide phototherapeutic therapy (PDT) has the advantages of deep tissue penetration, real-time monitoring of drug treatment and disease, little damage to normal tissue, low cytotoxicity and almost no side effects, and thus, it is attracting increasing research attention and is expected to show promising potential for clinical tumor treatment. The photosensitizer (PS), light source and oxygen are the three basic and important factors to construct PDT technology, and highly efficient PSs are still being passionately pursued because they determine the PDT efficiency. Ideal PSs should have properties such as good biocompatibility, deep tissue penetration, and highly efficient reactive oxygen species (ROS) generation despite the hypoxic environment. Therefore, pure organic type I PSs with NIR fluorescence have been receiving increasing attention due to their deep penetration and hypoxia resistance. However, reported NIR-active type I PSs usually require complex synthetic procedures, which presents a challenge for mass production. In this research work, based on the molecular design ideas of introducing the heavy atom effect and intramolecular charge transfer, we prepared three NIR-active type I PSs (TNZ, TNZBr, and TNZCHO) using a very simple method with one or two synthetic steps. Clear characterizations of photophysical properties, ROS performance tests, and fluorescent imaging of human umbilical vein endothelial (HUVE) cells and PDT treatment of HepG2 cells were carried out. The results revealed that the heavy atom and intramolecular charge transfer (ICT) effects could obviously enhance the ROS efficiency, and both PSs produce only type I ROS without any type II ROS (1O2) generation. The good NIR fluorescence brightness and type I ROS efficiency ensure satisfactory bioimaging and PDT outcomes. This research provides the possibility of preparing NIR-active type I PSs via mass production.

3.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673960

RESUMEN

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Perilla frutescens , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación hacia Abajo/genética , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/biosíntesis , Perilla frutescens/genética , Perilla frutescens/metabolismo , Filogenia , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
4.
Plants (Basel) ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38592849

RESUMEN

Brassinosteroids (BRs) are involved in the regulation of biotic and abiotic stresses in plants. The molecular mechanisms of BRs that alleviate the drought stress in quinoa have rarely been reported. Here, quinoa seedlings were treated with 24-epibrassinolide (EBR) and we transiently transferred CqBIN2 to the quinoa seedlings' leaves using VIGS technology to analyze the molecular mechanism of the BR mitigation drought stress. The results showed that EBR treatment significantly increased the root growth parameters, the antioxidant enzyme activities, and the osmolyte content, resulting in a decrease in the H2O2, O2∙-, and malondialdehyde content in quinoa. A transcriptome analysis identified 8124, 2761, and 5448 differentially expressed genes (DEGs) among CK and Drought, CK and EBR + Drought, and Drought and EBR + Drought groups. WGCNA divided these DEGs into 19 modules in which these characterized genes collectively contributed significantly to drought stress. In addition, the EBR application also up-regulated the transcript levels of CqBIN2 and proline biosynthesis genes. Silenced CqBIN2 by VIGS could reduce the drought tolerance, survival rate, and proline content in quinoa seedlings. These findings not only revealed that exogenous BRs enhance drought tolerance, but also provided insight into the novel functions of CqBIN2 involved in regulating drought tolerance in plants.

5.
Lupus ; 33(4): 365-374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320572

RESUMEN

BACKGROUND: Systemic lupus erythematosus is an immunologically dysregulated disease characterized by the presence of multiple autoantibodies. In SLE, B lymphocytes contribute to the dysregulated production of autoantibodies and cytokines. Recently, we discovered that miR-99a-3p binds to both EIF4EBP1 and NCAPG mRNA and that lowering miR-99a-3p can promote B cell autophagy in SLE by increasing EIF4EBP1 expression. However, the functions of miR-99a-3p and NCAPG in SLE have not been extensively investigated. OBJECTIVE: This work aims to evaluate the levels of miR-99a-3p and NCAPG expression in SLE B cells and to determine whether the aberrant expression of miR-99a-3p and NCAPG contributes to the pathological mechanisms in SLE. METHODS: B lymphocytes were obtained through immunomagnetic negative selection. Using RT-qPCR, miR-99a-3p and NCAPG mRNA expressions in B lymphocytes and in the BALL-1 cell line were measured. To determine the relative abundance of NCAPG, PI3K, p-PI3K, AKT, and p-AKT, we normalize them to the level of ß-actin using Western blotting. Evaluation of miR-99a-3p and NCAPG's impact on cell proliferation was done utilizing CCK-8 assay. Using flow cytometry, the cell cycle and apoptosis were both measured. RESULTS: Comparing SLE B cells to healthy controls, miR-99a-3p expression was significantly downregulated. Additionally, it was observed that SLE B cells had significantly higher NCAPG mRNA expression. Blocking miR-99a-3p expression in BALL-1 cells with an antagomir elevated NCAPG expression, facilitated PI3K/AKT pathway activation, improved cell proliferation, raised the fraction of S-phase cells, and prevented cell apoptosis. The opposite effects of upregulated miR-99a-3p levels on BALL-1 cells were observed by using an agomir. Furthermore, the effect of decreased miR-99a-3p expression on cell proliferation was partially mediated by elevating NCAPG levels and activating the PI3K/AKT pathway. CONCLUSION: Our research indicates that lower miR-99a-3p expression in SLE B cells appears to boost B cell number via the NCAPG and PI3K/AKT pathways.


Asunto(s)
Lupus Eritematoso Sistémico , MicroARNs , Humanos , Autoanticuerpos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero , Transducción de Señal
6.
Artículo en Inglés | MEDLINE | ID: mdl-38173205

RESUMEN

BACKGROUND: A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes. OBJECTIVE: Epirubicin delivery to gastric cancer cells using mesenchymal stem cells Methods: In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS. RESULTS: Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05). CONCLUSIONS: We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.

7.
Int J Food Microbiol ; 413: 110575, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244385

RESUMEN

Brown rot, aspergillosis and soft rot are the primary diseases of postharvest peach fruit. Our study aimed to investigate the biocontrol effect of Wickerhamomyces anomalus on the primary postharvest diseases of peach fruit and to explore its underlying physiological mechanism. The findings demonstrated that W. anomalus had an obvious inhibitory effect on Monilinia fructicola, Aspergillus niger and Rhizopus stolonifer. At the same time, W. anomalus can grow stably on the wound and surface of peach fruit at 25 °C and 4 °C and can form biofilm. W. anomalus increased the activity of resistance-related enzymes such as PPO, POD, GLU and the content of secondary metabolites such as total phenols, flavonoids and lignin in peach. Furthermore, the application of W. anomalus led to a reduced MDA level in peach fruit and increased activity of the active oxygen-scavenging enzyme system. This increase involved various antioxidant defense enzymes such as SOD and CAT, as well as ascorbic acid-glutathione (AsA-GSH) enzymes, including APX, GPX, GR, DHAR, and MDHAR. Our findings demonstrate that W. anomalus exerts its biocontrol effect by growing rapidly, competing with pathogens for nutrition and space, and enhancing the disease resistance and antioxidative capabilities of the peach fruit.


Asunto(s)
Prunus persica , Saccharomycetales , Frutas , Enfermedades de las Plantas/prevención & control
8.
Free Radic Biol Med ; 210: 1-12, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956910

RESUMEN

Patients with abdominopelvic cancer undergoing radiotherapy commonly develop radiation-induced intestinal injury (RIII); however, its underlying pathogenesis remains elusive. The von Willebrand factor (vWF)/a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in thrombosis, inflammation, and oxidative stress. However, its role in RIII remains unclear. In this study, the effect of radiation on vWF and ADAMTS13 expression was firstly evaluated in patients with cervical cancer undergoing radiotherapy and C57BL/6J mice exposed to different doses of total abdominal irradiation. Then, mice with the specific deletion of vWF in the platelets and endothelium were established to demonstrate the contribution of vWF to RIII. Additionally, the radioprotective effect of recombinant human (rh) ADAMTS13 against RIII was assessed. Results showed that both the patients with cervical cancer undergoing radiotherapy and RIII mouse model exhibited increased vWF levels and decreased ADAMTS13 levels. The knockout of platelet- and endothelium-derived vWF rectified the vWF/ADAMTS13 axis imbalance; improved intestinal structural damage; increased crypt epithelial cell proliferation; and reduced radiation-induced apoptosis, inflammation, and oxidative stress, thereby alleviating RIII. Administration of rhADAMTS13 could equally alleviate RIII. Our results demonstrated that abdominal irradiation affected the balance of the vWF/ADAMTS13 axis. vWF exerted a deleterious role and ADAMTS13 exhibited a protective role in RIII progression. rhADAMTS13 has the potential to be developed into a radioprotective agent.


Asunto(s)
Neoplasias del Cuello Uterino , Factor de von Willebrand , Femenino , Humanos , Ratones , Animales , Factor de von Willebrand/genética , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Ratones Endogámicos C57BL , Inflamación/prevención & control , Estrés Oxidativo
9.
Genomics ; 116(1): 110770, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128704

RESUMEN

Systemic Lupus Erythematosus (SLE) is an autoimmune sickness with unclear pathogenesis. The goal of this research was to reveal the heterogeneity of immune cells in SLE patients of Han and Zang nationality by single-cell RNA sequencing (scRNA-seq) and bioinformatics profiling. METHODS: A total of 94,102 peripheral blood mononuclear cells (PBMCs) from six volunteers with SLE (3 Zang, 3 Han) and six healthy controls were first conducted through scRNA-seq analysis. The immune cell subsets in the pathogenesis of SLE were analyzed as well. Real-time quantitative PCR (RT-qPCR) was applied to confirm the results of sc-RNA seq analysis. RESULTS: For the Tibetan samples, the ratios of Naïve CD4 RPS4Y1 cells, Naïve CD4 cells, Memory BC CD24 and Memory BC differed significantly between the SLE and control samples, while that of CD8 CTL MAL cells was significantly different between the two groups in Han nationality samples. Variable differentiation states of CD8 CTL MAL cells, CD8 CTL GZMK cells, and Naïve CD4 cells were detected through pseudotime analysis. Moreover, T-cell receptor (TCR) abundance was notably higher in Tibetan SLE specimens than that in controls, while B-cell receptor (BCR) abundance in Tibetan and Han samples was higher than in control groups. CONCLUSIONS: In summary, the immune cellular heterogeneity of SLE patients both Han and Zang nationality was explored based on various bioinformatics approaches, providing new perspectives for immunological characteristics of SLE among different ethnic groups.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Diferenciación Celular , Etnicidad , Lupus Eritematoso Sistémico/genética , Análisis de Secuencia de ARN
10.
Biotechnol Biofuels Bioprod ; 16(1): 179, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986026

RESUMEN

BACKGROUND: High-performance poly(p-phenylenebenzobisoxazole) (PBO) fiber, with excellent mechanical properties (stiffness, strength, and toughness), high thermal stability combined and light weight, are widely employed in automotive and aerospace composites, body armor and sports goods. Hydroxyl modified PBO (HPBO) fiber shows better photostability and interfacial shear strength. 2-Hydroxyterephthalic acid (2-HTA), the monomer for the HPBO fiber, is usually synthesized by chemical method, which has poor space selectivity and high energy consumption. The enzymatic Kolbe-Schmitt reaction, which carboxylates phenolic substrates to generate hydroxybenzoic acids with bicarbonate/CO2, was applied in de novo biosynthesis of 2-HTA with CO2 fixation. RESULTS: The biosynthesis of 2-HTA was achieved by the innovative application of hydroxybenzoic acid (de)carboxylases to carboxylation of 3-hydroxybenzoic acid (3-HBA) at the para-position of the benzene carboxyl group, known as enzymatic Kolbe-Schmitt reaction. 2,3-Dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) were expressed in recombinant E. coli and showed highest activity. The yield of 2-HTA was 108.97 ± 2.21 µg/L/mg protein in the whole-cell catalysis. In addition, two amino acid substitutions, F27G and T62A, proved to be of great help in improving 2,3-DHBD activity. The double site mutation F27G/T62A increased the production of 2-HTA in the whole-cell catalysis by 24.7-fold, reaching 2.69 ± 0.029 mg/L/mg protein. Moreover, de novo biosynthetic pathway of 2-HTA was constructed by co-expression of 2,3-DHBD_Ao and 3-hydroxybenzoate synthase Hyg5 in S. cerevisiae S288C with Ura3, Aro7 and Trp3 knockout. The engineered strain synthesized 45.40 ± 0.28 µg/L 2-HTA at 36 h in the CO2 environment. CONCLUSIONS: De novo synthesis of 2-HTA has been achieved, using glucose as a raw material to generate shikimic acid, chorismic acid, and 3-HBA, and finally 2-HTA. We demonstrate the strong potential of hydroxybenzoate (de)carboxylase to produce terephthalic acid and its derivatives with CO2 fixation.

11.
J Am Chem Soc ; 145(41): 22745-22752, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37800981

RESUMEN

Asymmetric olefin metathesis is a powerful strategy for stereocontrolled synthesis that allows the formation of chiral elements in conjunction with carbon-carbon double bonds. Here, we report a new series of cyclometalated stereogenic-at-Ru catalysts that enable highly efficient asymmetric ring opening/cross-metathesis (AROCM) and asymmetric ring-closing metathesis (ARCM) reactions. Single enantiomers of these catalysts with either right-handed or left-handed configurations at the Ru center can be easily accessed via highly stereoselective C-H bond activation-based cyclometalation. Right-handed chiral Ru catalysts enabled the Z- and enantioselective AROCM of a wide range of norbornenes and terminal alkenes, generating densely functionalized cyclopentanes with excellent stereo- and enantioselectivities (99:1 Z/E, up to 99% ee). Left-handed chiral Ru catalysts enabled the facile ARCM of sterically unhindered, all-terminal prochiral trienes, which had not been achieved by previous Ru catalysts, providing simple cyclic ethers and amides with tertiary or quaternary carbon stereocenters with excellent enantioselectivities (up to 99% ee).

12.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894786

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.


Asunto(s)
Perilla frutescens , Perilla frutescens/genética , Perilla frutescens/metabolismo , Glicerol/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Aceites de Plantas/metabolismo , Fosfatos/metabolismo
13.
Front Bioeng Biotechnol ; 11: 1229387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675406

RESUMEN

Introduction: C-phycocyanin (C-PC), a photosynthetic protein obtained from Spirulina, is regarded a highly promising commercially available biochemical. Numerous in vitro and in vivo studies have provided evidence of C-PC's ability to mitigate the inflammatory response, alleviate oxidative stress, and facilitate wound healing. However, despite the existing knowledge regarding C-PC's protective mechanism against cellular apoptosis induced by ultraviolet B (UVB) radiation, further in vivo experiments are needed to explore its anti-photoaging mechanism. Methods: In this study, a UVB-induced skin photoaging model was established using BALB/c-nu mice, and the potential protective effects of topically administered c-PC were investigated by various molecular biology tools. In addition, a novel delivery system, C-PC nanodispersion, was developed to facilitate the transdermal delivery of C-PC. Results: C- PC demonstrated significant anti-photoaging activities in the UVB-induced skin. The application of C-PC to the dorsal skin of the mice resulted in improved macroscopic characteristics, such as reduced sagging and coarse wrinkling, under UVB irradiation Histological analyses showed that C-PC treatment significantly decreased the symptoms of epidermal thickening, prevented dermal collagen fiber loosening, increased the hydroxyproline (Hyp) content and activities of antioxidant enzymes (such as superoxide dismutase, catalase, and glutathione peroxidase) in mouse skin, decreased malondialdehyde levels and expressions of inflammatory factors (interleukin-1α [IL-1α], IL-1ß, IL-6, and tumor necrosis factor-α), reduced matrix metalloproteinase [MMP-3 and MMP-9] expressions, and inhibited the phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 proteins in the mitogen-activated protein kinase family. Discussion: By analyzing the results of the study, a new drug delivery system, C-PC nano-dispersion, was proposed, and the anti-photoaging effect of C-PC and its mechanism were investigated.

14.
Neurochem Int ; 170: 105610, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704080

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.

16.
Clin J Pain ; 39(11): 571-579, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712228

RESUMEN

OBJECTIVES: This study aimed to investigate the perioperative analgesic effects of anterior quadratus lumborum block (QLB) for total laparoscopic hysterectomy (TLH). MATERIALS AND METHODS: One hundred patients undergoing TLH were randomized to receive an anterior QLB or placebo before general anesthesia. The primary and secondary outcomes were postoperative sufentanil consumption, intraoperative remifentanil demand, time to first opioid demand, numeric rating scale (NRS) pain scores, heart rate, mean arterial pressure, and complications within 24 hours after surgery. RESULTS: No significant intergroup differences were observed in sufentanil consumption within 24 hours after surgery. Remifentanil consumption during surgery was lower in the QLB group than in the placebo group. At 1 hour after surgery, the NRS scores of abdominal visceral pain at rest and during activity were 1.26 and 1.41 points lower than those in the placebo group. In other time points, the differences in abdominal visceral pain were neither statistically significant nor clinically significant (pain difference <1) or both. No significant differences in NRS scores of shoulder pain, abdominal incisional pain, and perineal pain were observed between the 2 groups, at rest or during activity. There were no significant differences in other secondary outcome variables between the 2 groups. DISCUSSION: Preoperative bilateral anterior QLB only reduced intraoperative opioid demand and postoperative abdominal visceral pain scores at 1 hour after surgery. Thus, the clinical significance of anterior QLB in TLH may be limited.

17.
Med Oncol ; 40(9): 276, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612479

RESUMEN

Comprehensive analysis of the expression and probable function of LSM2 in Live hepatocellular carcinoma (LIHC), and validation via in vitro experiments. Integrated use of database resources to examine the differential expression, survival prognosis, clinicopathological characteristics, and functional enrichment of LSM2 in LIHC. The expression level of LSM2 in LIHC tissues and adjacent tissues was proven via immunohistochemical staining. The biological function of LSM2 in LIHC was detected by cell proliferation, cell cloning, cell scratch, cell migration, and invasion experiments in vitro. TIMER 2.0 and GEPIA indicated that LSM2 was highly expressed in cancers and was strongly associated with survival rates in LIHC, cholangiocarcinoma, breast cancer, and renal clear cell carcinoma. LSM2 was highly expressed in LIHC, which was closely associated to the clinicopathological characteristics of patients, and the overall survival rate and disease-free survival rate of patients with high expression of LSM2 were lower than those with low expression of LSM2. Functional enrichment results revealed that LSM2 was involved to ribosome formation, DNA replication, cell cycle, metabolic processes, JAK-STAT signaling pathways, and FoxO signaling pathways. Knockdown of LSM2 inhibited the proliferation, migration, and invasion of LIHC cells in vitro experiments. LSM2 was highly expressed in LIHC and was related to a poor prognosis. Knockdown of LSM2 could inhibit the proliferation, migration, and invasion of LIHC cells.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Neoplasias Renales , Neoplasias Hepáticas , Humanos , Conductos Biliares Intrahepáticos , Carcinoma Hepatocelular/genética , Biología Computacional , Neoplasias Hepáticas/genética
19.
CNS Neurosci Ther ; 29(12): 3952-3966, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37353944

RESUMEN

AIMS: Chromosome 9 open reading frame 72 (C9orf72) is one of the most dazzling molecules in neurodegenerative diseases, albeit that its role in Parkinson's disease (PD) remains unknown. This article aimed to explore the potential mechanism of C9orf72 involved in the pathogenesis of PD. METHODS: The expression and phosphorylation levels of C9orf72 were examined by Western blotting, RT-PCR, and immunoprecipitation using PD models. Multiple bioinformatics software was used to predict the potential phosphorylation sites of C9orf72 by Cdk5, followed by verification of whether Cdk5-inhibitor ROSCOVITINE could reverse the degradation of C9orf72 in PD. By constructing the sh-C9orf72-knockdown adenovirus and overexpressing the FLAG-C9orf72 plasmid, the effects of C9orf72 knockdown and overexpression, respectively, were determined. A short peptide termed Myr-C9orf72 was used to verify whether interfering with Cdk5 phosphorylation at the Ser9 site of the C9orf72 protein could alleviate autophagy disorder, neuronal death, and movement disorder in PD models. RESULTS: The expression level of the C9orf72 protein was significantly reduced, albeit the mRNA expression was not changed in the PD models. Moreover, the phosphorylation level was enhanced, and its reduction was mainly degraded by the ubiquitin-proteasome pathway. The key nervous system kinase Cdk5 directly phosphorylated the S9 site of the C9orf72 protein, which promoted the degradation of the C9orf72 protein. The knockdown of C9orf72 aggravated autophagy dysfunction and increased neuronal loss and motor dysfunction in substantia nigra neurons of PD mice. The overexpression of C9orf72 alleviated autophagy dysfunction in PD neurons. Specifically, interference with Cdk5 phosphorylation at the S9 site of C9orf72 alleviated autophagy dysfunction, neuronal death, and motor dysfunction mediated by C9orf72 protein degradation during PD. CONCLUSIONS: Cumulatively, our findings illustrate the importance of the role of C9orf72 in the regulation of neuronal death during PD progression via the Cdk5-dependent degradation.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Proteína C9orf72 , Muerte Celular/fisiología , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/farmacología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Fosforilación
20.
Hypertens Res ; 46(7): 1759-1770, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37188751

RESUMEN

Malignant nephrosclerosis is a thrombotic microangiopathy associated with abnormal local activation of the complement alternative pathway (AP). However, the mechanism underlying local AP activation is not fully understood. We hypothesized that complement factor D (CFD) secreted by endothelial cells triggers vascular dysfunction in malignant nephrosclerosis via local complement activation. We investigated the deposition of CFD in human kidney biopsy tissues and the function of endothelial-derived CFD in endothelial cell cultures. Immunofluorescence microscopy and laser microdissection-targeted mass spectrometry revealed significant deposition of CFD in the kidneys of patients with malignant nephrosclerosis. Conditionally immortalized human glomerular endothelial cells (CiGEnCs) continuously expressed and secreted CFD in vitro. CFD knockdown in CiGEnCs by small interfering RNA reduced local complement activation and attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), von Willebrand factor (VWF), and endothelin-1 (ET-1) induced by Ang II. The expression of CFD in CiGEnCs was significantly higher than that in other types of microvascular endothelial cells. Our findings suggest that (i) glomerular endothelial cells are an important source of local renal CFD, (ii) endothelial-derived CFD can activate the local complement system, and (iii) endothelial-derived CFD mediates endothelial dysfunction, which may play a role in the pathogenesis of malignant nephrosclerosis.


Asunto(s)
Nefroesclerosis , Enfermedades Vasculares , Humanos , Células Endoteliales/metabolismo , Factor D del Complemento/metabolismo , Nefroesclerosis/patología , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA