Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093358

RESUMEN

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Técnicas Electroquímicas , Límite de Detección , MicroARNs , MicroARNs/análisis , MicroARNs/genética , Sistemas CRISPR-Cas/genética , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética
2.
Chemosphere ; 363: 142824, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996980

RESUMEN

The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.


Asunto(s)
Carbón Orgánico , Clorofenoles , Pirólisis , Aguas del Alcantarillado , Sulfatos , Carbón Orgánico/química , Aguas del Alcantarillado/química , Clorofenoles/química , Sulfatos/química , Biocombustibles/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Catálisis , Hierro/química , Aceites de Plantas , Polifenoles
3.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746288

RESUMEN

We previously reported altered neuronal Ca 2+ dynamics in the motor cortex of 12-month-old JNPL3 tauopathy mice during quiet wakefulness or forced running, with a tau antibody treatment significantly restoring the neuronal Ca 2+ activity profile and decreasing pathological tau in these mice 1 . Whether neuronal functional deficits occur at an early stage of tauopathy and if tau antibody treatment is effective in younger tauopathy mice needed further investigation. In addition, neuronal network activity and neuronal firing patterns have not been well studied in behaving tauopathy models. In this study, we first performed in vivo two-photon Ca 2+ imaging in JNPL3 mice in their early stage of tauopathy at 6 months of age, compared to 12 month old mice and age-matched wild-type controls to evaluate neuronal functional deficits. At the animal level, frequency of neuronal Ca 2+ transients decreased only in 6 month old tauopathy mice compared to controls, and only when animals were running on a treadmill. The amplitude of neuronal transients decreased in tauopathy mice compared to controls under resting and running conditions in both age groups. Total neuronal activity decreased only in 6 month old tauopathy mice compared to controls under resting and running conditions. Within either tauopathy or wild-type group, only total activity decreased in older wild-type animals. The tauopathy mice at different ages did not differ in neuronal Ca 2+ transient frequency, amplitude or total activity. In summary, neuronal function did significantly attenuate at an early age in tauopathy mice compared to controls but interestingly did not deteriorate between 6 and 12 months of age. A more detailed populational analysis of the pattern of Ca 2+ activity at the neuronal level in the 6 month old cohort confirmed neuronal hypoactivity in layer 2/3 of primary motor cortex, compared to wild-type controls, when animals were either resting or running on a treadmill. Despite reduced activity, neuronal Ca 2+ profiles exhibited enhanced synchrony and dysregulated responses to running stimulus. Further ex vivo electrophysiological recordings revealed reduction of spontaneous excitatory synaptic transmission onto and in pyramidal neurons and enhanced excitability of inhibitory neurons in motor cortex, which were likely responsible for altered neuronal network activity in this region. Lastly, tau antibody treatment reduced pathological tau and gliosis partially restored the neuronal Ca 2+ activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. Highlights: Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.

4.
Anal Chim Acta ; 1303: 342521, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609263

RESUMEN

BACKGROUND: Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO2 (H-MnO2)-based theranostic nanoplatform, DNAzyme@H-MnO2-MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. RESULTS: The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO2 exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL µg-1) and FAM-DNAzyme (3.37 pmoL µg-1), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn2+ was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO2 also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. SIGNIFICANCE: This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.


Asunto(s)
Carbocianinas , ADN Catalítico , Neoplasias , Medicina de Precisión , Compuestos de Manganeso , Óxidos , Imagen Óptica , Biomarcadores
5.
Anal Chem ; 96(6): 2369-2377, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38310525

RESUMEN

Ultrasensitive and accurate monitoring of carboxylesterase (CE) activity is extremely crucial for the early diagnosis of hepatocellular carcinoma (HCC), which is still a considerable challenge. Herein, using a co-reactive ligand engineering strategy, ultra-bright near-infrared (λmax = 830 nm) and self-enhanced electrochemiluminescence (ECL) Au nanoclusters (NCs) were in situ prepared with 2-(diethylamino) ethanethiol (DEAET) as a co-reactive ligand. Remarkably, the co-reactive ligand not only acts as a stabilizer like traditional ligands but also plays a crucial role as a co-reactant to ensure a confinement effect to shorten the charge transfer distance and increase the local concentration, significantly improving the collision efficiency between the electrogenerated free radicals. Consequently, the DEAET Au NCs exhibited a record and stable anodal ECL without the addition of an exogenous co-reactant, dramatically superior to classical Au NCs and Ru(bpy)32+ with a certain amount of the co-reactant. As a proof of concept, a convenient and label-free CE biosensor was innovatively constructed using 1-naphthyl acetate as a selective substrate, achieving ultrasensitive detection for CE activity with a low limit of detection of 9.1 × 10-7 U/L. Therefore, this work not only paves a co-reactive ligand engineering strategy for in situ preparation of high-efficiency metal NCs but also provides an ultrasensitive and convenient platform for the early diagnosis of HCC.


Asunto(s)
Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Mediciones Luminiscentes , Oro , Ligandos , Técnicas Electroquímicas , Neoplasias Hepáticas/diagnóstico , Hidrolasas de Éster Carboxílico , Límite de Detección
6.
Environ Pollut ; 345: 123476, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311160

RESUMEN

A biochar-intensified phytoremediation experiment was designed to investigate the dynamic effects of different biochars on polycyclic aromatic hydrocarbon (PAH) removal in ryegrass rhizosphere contaminated soil. Maize and wheat straw biochar pyrolyzed at 300 °C and 500 °C were amended into PAH-contaminated soil, and then ryegrass (Lolium multiflorum L.) was planted for 90 days. Spearman's correlations among PAH removal, enzyme activity, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHDα), and fungal and bacterial community structure were analyzed to elucidate the microbial degradation mechanisms during the combined remediation process. The results showed that 500 °C wheat straw biochar had higher surface area and more nutrients, and significantly accelerated the phytoremediation of PAHs (62.5 %), especially for high molecular weight PAH in contaminated soil. The activities of urease and dehydrogenase and the abundance of total and PAH-degrading bacteria, which improved with time by biochar and ryegrass, had a positive correlation with the removal rate of PAHs. Biochar enhanced the abundance of gram-negative (GN) PAH-RHDα genes. The GN PAH-degraders, Sphingomonas, bacteriap25, Haliangium, and Dongia may play vital roles in PAH degradation in biochar-amended rhizosphere soils. Principal coordinate analysis indicated that biochar led to significant differences in fungal community structures before 30 days, while the diversity of the bacterial community composition depended on planting ryegrass after 60 days. These findings imply that the structural reshaping of microbial communities results from incubation time and the selection of biochar and ryegrass in PAH-contaminated soils. Applying 500 °C wheat straw biochar could enhance the rhizoremediation of PAH-contaminated soil and benefit the soil microbial ecology.


Asunto(s)
Carbón Orgánico , Microbiota , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo
7.
Nat Commun ; 15(1): 1618, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388544

RESUMEN

Wet-tissue adhesives have long been attractive materials for realizing complicated biomedical functions. However, the hydration film on wet tissues can generate a boundary, forming hydrogen bonds with the adhesives that weaken adhesive strength. Introducing black phosphorus (BP) is believed to enhance the water absorption capacity of tape-type adhesives and effectively eliminate hydration layers between the tissue and adhesive. This study reports a composite patch integrated with BP nanosheets (CPB) for wet-tissue adhesion. The patch's improved water absorption and mechanical properties ensure its immediate and robust adhesion to wet tissues. Various bioapplications of CPB are demonstrated, such as rapid hemostasis (within ~1-2 seconds), monitoring of physical-activity and prevention of tumour-recurrence, all validated via in vivo studies. Given the good practicability, histocompatibility and biodegradability of CPB, the proposed patches hold significant promise for a wide range of biomedical applications.


Asunto(s)
Adhesivos Tisulares , Agua , Humanos , Agua/química , Fósforo , Adherencias Tisulares , Adhesivos/química , Adhesivos Tisulares/química , Hidrogeles
8.
J Hazard Mater ; 466: 133684, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310844

RESUMEN

In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.


Asunto(s)
Metales Pesados , Oryza , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Microbiología del Suelo , Carbón Orgánico/química , Bacterias/genética , Suelo/química , Medicago sativa
9.
Bioorg Chem ; 143: 107001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101266

RESUMEN

Although the SARS-CoV-2 pandemic has ended, multiple sporadic cases still exist, posing a request for more antivirals. The main protease (Mpro) of SARS-CoV-2, a key enzyme for viral replication, is an attractive target for drug development. Here, we report the discovery of a new potent α-ketoamide-containing Mpro inhibitor, N-((R)-1-cyclohexyl-2-(((R)-3-methoxy-1-oxo-1-((1-(2-oxo-2-((thiazol-2-ylmethyl)amino)acetyl)cyclobutyl)amino)propan-2-yl)amino)-2-oxoethyl)-4,4-difluorocyclohexane-1-carboxamide (20j). This compound presented promising enzymatic inhibitory activity against SARS-CoV-2 Mpro with an IC50 value of 19.0 nM, and an excellent antiviral activity in cell-based assay with an EC50 value of 138.1 nM. This novel covalent inhibitor may be used as a lead compound for subsequent drug discovery against SARS-CoV-2.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Humanos , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
10.
Environ Pollut ; 333: 121972, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295710

RESUMEN

It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g-1 and 6.40 mmol g-1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.


Asunto(s)
Nanoporos , Oxitetraciclina , Carbono/química , Dióxido de Carbono/química , Nitrógeno/química , Antibacterianos , Fermentación
11.
Environ Pollut ; 330: 121681, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087086

RESUMEN

The effective removal of tetracycline antibiotics (TCs) from water is of great significance and remains a big challenge. In this work, a novel magnetized biochar (magnetic functionalized carbon microsphere, MF-CMS) was prepared by the coupling hydrothermal carbonization and pyrolysis activation of starch-rich rice waste using ZnCl2 and FeCl3 as activators. As the MF-CMS dose was 2.0 g/L, the initial concentration of TCs was 100 mg/L, the removal rates of tetracycline, doxycycline, oxytetracycline, and chlortetracycline were 96.02%, 96.10%, 96.52%, and 85.88%, respectively. The best modeled on pseudo second order, Langmuir adsorption model, and intraparticle diffusion kinetic models suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. TCs were efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups (such as γ-Fe2O3 and FeOOH). The removal rates of TCs after five cycles approximately decreased by 20%. And the cycling and metal ion release experiments of MF-CMS indicated that MF-CMS had good reusability, stability, and safety. The estimated cost of preparing MF-CMS is 5.91 USD per kg, and 1 kg of MF-CMS (consuming 8 kg of waste rice) can approximately treat 0.55 tons of TCs wastewater. Overall, the magnetic biochar derived from starch-rich rice waste as an adsorbent has promising and effective for the removal of TCs from water, but also provides a new idea for the resourceful treatment of solid waste.


Asunto(s)
Oryza , Contaminantes Químicos del Agua , Agua , Antibacterianos , Tetraciclina , Carbón Orgánico , Adsorción , Fenómenos Magnéticos , Cinética
13.
FASEB J ; 37(5): e22896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37000506

RESUMEN

Associative learning and memory are fundamental behavioral processes through which organisms adapt to complex environments. Associative memory involves long-lasting changes in synaptic plasticity. Dendritic spines are tiny protrusions from the dendritic shaft of principal neurons, providing the structural basis for synaptic plasticity and brain networks in response to external stimuli. Mounting evidence indicates that dendritic spine dynamics are crucial in different associative memory phases, including acquisition, consolidation, and reconsolidation. Causally bridging dendritic spine dynamics and associative memory is still limited by the suitable tools to measure and control spine dynamics in vivo under behaviorally relevant conditions. Here, we review data providing evidence for the remodeling of dendritic spines during associative memory processing and outline open questions.


Asunto(s)
Espinas Dendríticas , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Encéfalo/fisiología , Memoria/fisiología , Neuronas , Sinapsis
14.
Commun Biol ; 6(1): 193, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36806252

RESUMEN

The coronavirus nucleocapsid (N) protein interacts with non-structural protein 3 (Nsp3) to facilitate viral RNA synthesis and stabilization. However, structural information on the N-Nsp3 complex is limited. Here, we report a 2.6 Å crystal structure of the N-terminal domain (NTD) of the N protein in complex with the ubiquitin-like domain 1 (Ubl1) of Nsp3 in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One NTD and two Ubl1s formed a stable heterotrimer. We performed mutational analysis to reveal the key residues for this interaction. We confirmed the colocalization of SARS-CoV-2 N and Nsp3 in Huh-7 cells. N-Ubl1 interaction also exists in SARS-CoV and Middle East respiratory syndrome coronavirus. We found that SARS-CoV-2 Ubl1 competes with RNA to bind N protein in a dose-dependent manner. Based on our results, we propose a model for viral ribonucleoprotein dissociation through N protein binding to Ubl1 of Nsp3.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Ribonucleoproteínas
15.
Environ Sci Pollut Res Int ; 30(15): 45259-45273, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36705826

RESUMEN

Porous sludge biochar (PSDBC) and zero-valent iron (ZVI) supported on porous sludge biochar composite (ZVI@PSDBC) were synthesized using municipal sludge through pyrolysis under N2 atmosphere, which manifested upgraded performance in persulfate (PS) activation for 2,4-dichlorophenol (2,4-DCP) degradation. The 2,4-DCP (50 mg/L) could be almost completely removed within 20 min under relatively low PS dosage (0.5 mmol/L) in both PSDBC/PS and ZVI@PSDBC/PS systems, and the mineralization rate could respectively approach 73.7% and 91.6% in 60 min. Combined with a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) characterization and electron spin-resonance (ESR) detection, electrochemical analysis, the radical and non-radical pathways in the catalytic systems were discussed. Graphitized structure and superior conductivity made PSDBC and ZVI@PSDBC not only act as electron donors in PS activation to create radicals (mainly SO4·- and ·OH), but also as "mediators" to facilitate the direct electron transfer from 2,4-DCP to the catalysts-PS complexes. The C=O groups of PSDBC and ZVI@PSDBC aided in the production of 1O2. Meanwhile, zero-valent iron nanoparticles promoted the formation of radicals as the reactive sites of PS, resulting in the most effective 2,4-DCP degradation in the ZVI@PSDBC/PS system. The stability and practicability of sludge biochar materials had been demonstrated in reusability and actual wastewater experiments. The findings provided a promising way for the reuse of municipal sludge and effective PS activation in wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Hierro/química , Carbón Orgánico/química , Oxidación-Reducción
16.
Anal Chem ; 95(6): 3332-3339, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716431

RESUMEN

Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeated sequences, which acted as triggers to initiate the transcleavage activity of CRISPR-Cas12a. The activated Cas12a could cleave the biotinylated linker DNA of CuS nanoparticles (NPs) to inhibit the binding of CuS NPs to streptavidin immobilized on the surface of the microplate, which strongly reduced the generation of Cu2+ from a cation exchange between CuS NPs and AgNO3, and thus efficiently suppressed the CL of Cu2+-luminol-H2O2 system, giving a "signal off" biosensor. With the multiple amplification, the detection limit of the developed sensor for miRNA-21 reached 16 aM. In addition, this biosensor is not only suitable for a professional chemiluminescence instrument but also for a smartphone used as a detection tool for the purpose of portable and low-cost assay. This method could be used to specifically detect quite a low level of miRNA-21 in human serum samples and various cancer cells, indicating its potential in ultrasensitive molecular diagnostics.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , Sistemas CRISPR-Cas/genética , Luminiscencia , Peróxido de Hidrógeno/química , ADN/genética , MicroARNs/genética , MicroARNs/química , Técnicas Biosensibles/métodos
17.
Chem Commun (Camb) ; 58(94): 13107-13110, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36345718

RESUMEN

A programmed DNA-Au nanomachine has been constructed to achieve in situ imaging of transmembrane glycoprotein MUC1 and cytoplasmic miRNA-21 and trigger gene silencing therapy. The results of MCF-7 cell-specific imaging and apoptosis experiments demonstrate that the nanomachine provides a valuable nanotheranostic platform for accurate multi-site imaging and intracellular gene silencing.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , ADN/genética , Células MCF-7 , Diagnóstico por Imagen , Silenciador del Gen , Biomarcadores , MicroARNs/genética , Técnicas Biosensibles/métodos
18.
Nanoscale ; 14(46): 17222-17229, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36250272

RESUMEN

Perovskite nanocrystals (PNCs) have attracted widespread attention as promising materials for the optoelectronic field due to their remarkable photophysical properties and structural tunability. However, their poor stability and the use of toxic organic solvents in the preparation process have severely restricted their practical applications. Herein, a facile, rapid and toxic organic solvent-free synthesis strategy of CsPbBr3 PNCs was developed for the first time via the ligand-assisted reprecipitation (LARP) method using natural deep eutectic solvents (NADESs) as solvents and surface ligands. In this method, the NADESs not only functioned as solvents for green synthesis, but also served simultaneously as surface ligands of CsPbBr3 PNCs to significantly improve their optical properties and stability. The as-synthesized CsPbBr3 PNCs exhibited high photoluminescence quantum yield (PLQY, ∼96.8%), narrow full width at half-maximum (FWHM, ∼18.8 nm) and a high stability that retained 82.9% of PL intensity after 70 days. This work provides a new strategy for the green synthesis of PNCs, which promises feasibility for the industrial large-scale synthesis of high-quality PNCs.

19.
RSC Adv ; 12(38): 25106-25111, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36199878

RESUMEN

Sensing temperature (T) has gained great attention since T is the most important parameter in daily life, scientific research and industry. A ratiometric fluorescence T sensor is fabricated by doping MAPbBr3 perovskite nanocrystals (PNCs) and rhodamine B (RhB) into a polyacrylonitrile (PAN) matrix and the composite materials are electrospun into optical fibers. The fibers show characteristic emissions at 521 and 587 nm under UV irradiation (λ ex = 365 nm). Both emission intensities gradually increased with elevating T, accompanied with a fluorescence color change from green to yellow. There is a linear relationship between fluorescence intensity ratio (I 521/I 587) and T in the range of 30-45 °C. The T response sensitivity is as high as 4.38% °C-1 at 45 °C.

20.
ACS Sens ; 7(10): 3153-3160, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36219232

RESUMEN

A novel label-free photoelectrochemical (PEC) biosensor is presented in this work. As a barrier, the DNA hydrogel could block the coupling between g-C3N4 and CdS quantum dots (QDs). Therefore, extremely low photocurrent signals were obtained. The presence of target microRNA-21 can initiate the rolling circle amplification (RCA) reaction, which in turn produces many repeated sequences to activate the CRISPR/Cas12a system. The trans-cleavage activity of the CRISPR/Cas12a system led to the degradation of DNA hydrogels efficiently. As a result, the g-C3N4/CdS QDs heterojunction was formed through "click" chemistry. Through the amplification of the RCA and CRISPR/Cas12a system, the sensitivity of the PEC biosensor was improved significantly with the detection limit of 3.2 aM. The proposed sensor also showed excellent selectivity and could be used to detect actual samples. In addition, the modular design could facilitate the detection of different objects. Thus, the proposed CRISPR/Cas12a system responsive DNA hydrogel provides a simple, sensitive, and flexible way for label-free PEC analysis.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Hidrogeles , Sistemas CRISPR-Cas , ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...