Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404629, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845560

RESUMEN

Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.

2.
J Diabetes Investig ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923403

RESUMEN

AIMS/INTRODUCTION: To investigate risk factors for diabetic peripheral neuropathy (DPN) and to explore the connection between insulin-like growth factor-1 (IGF-1) and DPN in individuals with type 2 diabetes. MATERIALS AND METHODS: A total of 790 patients with type 2 diabetes participated in a cross-sectional study, divided into two groups: those with DPN (DPN) and those without DPN (non-DPN). Blood samples were taken to measure IGF-1 levels and other biochemical markers. Participants underwent nerve conduction studies and quantitative sensory testing. RESULTS: Patients with DPN exhibited significantly lower levels of IGF-1 compared with non-DPN patients (P < 0.001). IGF-1 was positively correlated with the average amplitude of both motor (P < 0.05) and sensory nerves (P < 0.05), but negatively correlated with the vibration perception threshold (P < 0.05). No significant difference was observed between IGF-1 and nerve conduction velocity (P > 0.05), or the temperature detection threshold (P > 0.05). Multivariate regression analysis identified diabetes duration, HbA1c, and the low levels of IGF-1 as independent risk factors (P < 0.001). Receiver operating characteristic analysis determined that at 8 years duration of diabetes, 8.5% (69.4 mmol/mol) HbA1c and 120 ng/mL IGF-1, the optimal cut-off points, indicated DPN (P < 0.001). CONCLUSIONS: A reduction of IGF-1 in patients with DPN suggests a potential protective role against axon injury in large fiber nerves of type 2 diabetes patients.

3.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607332

RESUMEN

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Ratones , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Masculino , Imagen Molecular/métodos , Halogenación , Distribución Tisular , Humanos
4.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542884

RESUMEN

Cell-penetrating peptides (CPPs) are invaluable tools for delivering various substances into cells by crossing biological membranes. However, the effects of cell-penetrating peptide fusion proteins on the biological activity of antibodies remain to be fully understood. Here, we engineered a recombinant protein, LP-scFv, which combines the single-chain variable region of anti-human epidermal growth factor receptor-2 with a novel and non-oxic cell-penetrating peptide as a leader peptide. The introduction of this leader peptide led to a more than twofold increase in the internalization efficiency of the single-chain antibody, as confirmed using microscopic analysis and flow cytometry. The effects of the single-chain antibodies and LP-scFv on cell viability were evaluated using the MTT assay. Both the single-chain antibodies and LP-scFv reduced the viability of BT474 and NCI-N87 cells in a dose-dependent manner while exhibiting minimal toxicity towards MCF-7 and MCF-10A cells. Further investigation into LP-scFv's mechanism revealed that the induced leader peptide does not alter the MAPK-ERK1/2 and PI3K/AKT pathways of single-chain antibodies. An enhanced antitumor activity was also confirmed in an NCI-N87 tumor xenograft model in mice with a reduction of 45.2% in tumor growth inhibition (vs. 23.1% for scFv) with a 50 mg/kg dose after orthotopic injection administration, which was equivalent to that of trastuzumab (vs. 55.7% for trastuzumab). Overall, these results indicate that LP-scFv exhibits significant permeation activity in HER2-positive cells to enhance the intracellular dose effect on antitumor activity in vitro and in vivo. This research lays the foundation for designing novel antibody-based therapies for cancer.


Asunto(s)
Neoplasias de la Mama , Péptidos de Penetración Celular , Anticuerpos de Cadena Única , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , Anticuerpos de Cadena Única/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Señales de Clasificación de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Opt Express ; 32(5): 8081-8091, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439474

RESUMEN

A digital pre-distortion (DPD) scheme based on an adaptive-memory-length look-up table (AML-LUT) is proposed and experimentally demonstrated in a four-level pulse amplitude modulation (4-PAM) underwater optical wireless communication (UOWC) system. By implementing adaptive memory length for each pattern in the AML-LUT-based DPD, the size of the AML-LUT can be significantly reduced without sacrificing performance compared to both the full-size LUT and the multi-symbol simplified look-up table (MSS-LUT)-based DPDs. The performance of the proposed AML-LUT-based DPD is experimentally evaluated for a 625 Mbit/s 4-PAM UOWC over 1 m transmission length. Experimental results show that compared with the full-size LUT with a memory length of 7 (LUT-7)-based DPD, the proposed AML-LUT-based DPD (i) incurs a marginal power penalty of 0.5 dB at both the 7% hard-decision forward error correction (HD-FEC) and KP4-FEC threshold limits, while simultaneously reducing the implementation complexity (i.e., the LUT size) by 93%; (ii) achieves comparable transmission performance compared to the MSS-LUT-based DPD, while reducing the implementation complexity by 89%; and (iii) shows great potential for high-speed, low-complexity and memory-efficient intensity modulation and direct detection (IM/DD) UOWC and short-reach optical interconnects.

6.
Bioorg Chem ; 146: 107279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513325

RESUMEN

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radiofármacos/química , Radioquímica , Piridinas/metabolismo
7.
Nat Med ; 30(3): 749-761, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287168

RESUMEN

Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteómica , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estudios Prospectivos
8.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181741

RESUMEN

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Asunto(s)
Neoplasias Pulmonares , Proteogenómica , Carcinoma Pulmonar de Células Pequeñas , Humanos , Línea Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/química , Carcinoma Pulmonar de Células Pequeñas/genética , Xenoinjertos , Biomarcadores de Tumor/análisis
9.
J Med Chem ; 67(1): 245-271, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38117951

RESUMEN

Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.


Asunto(s)
Antineoplásicos , Humanos , Ratas , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacocinética , Línea Celular Tumoral
10.
J Med Chem ; 66(23): 16075-16090, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37972387

RESUMEN

Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.


Asunto(s)
Neuralgia , Enfermedades Neuroinflamatorias , Animales , Ratones , Encéfalo/metabolismo , Histona Desacetilasas/metabolismo , Neuralgia/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
11.
J Hazard Mater ; 460: 132478, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37688868

RESUMEN

Commercial organic fertilizer, an essential fertilizer for developing organic farming in China, has been identified as a potentially important source of microplastics (MPs) on farmland. However, little is known about the occurrence of MPs in commercial organic fertilizers and their potential ecological risks nationwide. Here, stereoscopy and laser-infrared imaging spectrometry were used to comprehensively investigate the abundance, size, type and morphology of MPs in commercial organic fertilizers collected from mainland China, assess the ecological risks, and predict MP contamination. Commercial organic fertilizers contained many MPs (8.88 ×103 to 2.88 ×105 items/kg), especially rich in small-size MPs (<100 µm), accounting for 76.53%. The highest MP pollution load value was observed in fertilizers collected from East China. Chlorinated polyethylene, polyurethane, polyethylene and polypropylene were the dominant MPs with the shape of film and fragment, concentrated in small sizes (<100 µm). The risk index (H-index) of the MPs was used to quantify the ecological risk of the MPs in the different samples, and most of the fertilizers were at level Ⅲ with high risk. Predictably, 2.32 × 1013 - 2.81 × 1016 MPs will accumulate in orchard soils after five years of fertilization, especially in South, Southwest and East China. This study provides primary scientific data on MP pollution in commercial fertilizer and the health development of organic farming.

12.
Opt Express ; 31(14): 23086-23094, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475401

RESUMEN

A low-complexity 3rd-order frequency-domain nonlinear equalizer (FD-NLE) with absolute operation is proposed and experimentally demonstrated for underwater wireless optical communications (UWOC). In the proposed FD-NLE scheme, absolute operation and fast Fourier transform (FFT) with multiplication operations are utilized instead of the square and convolution operations used in conventional polynomial nonlinear equalizers (PNLEs), respectively. Therefore, complexity reductions by over 77.3% and 66.9% can be achieved compared with those of PNLE and PNLE with absolute operation, respectively, with a memory length larger than 8. A UWOC system using orthogonal frequency division multiplexing (OFDM) signals with adaptive bit and power loading is also demonstrated to evaluate the performance of the proposed scheme. Experimental results show that data rate increments by ∼ 5.6% and ∼ 5.7% at BER below 7% hard-decision forward error correction (HD-FEC) limit of 3.8 × 10-3, compared with PNLE and PNLE with absolute operation, respectively, are realized using the proposed scheme. Meanwhile, the proposed scheme has an up to 14.7% complexity reduction compared with conventional frequency-domain PNLE (FD-PNLE), while maintaining similar equalization performance.

13.
Front Neurosci ; 17: 1227049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456998

RESUMEN

Immunotherapy is a promising method for cancer treatment. Among them, immune checkpoint inhibitors targeting PD-1/PD-L1 are increasingly used for certain cancers. However, with the widespread use of such drugs, reports of immune-related adverse events (irAEs) are also increasing. Neurological adverse events (nAEs) are one of the irAEs that affect the peripheral and central nervous systems. They are characterized by low incidence, hard to diagnose, and life-threatening risks, which have a significant impact on the prognosis of patients. Biomarker-based early diagnosis and subsequent treatment strategies are worthy of attention, and comprehensive management of irAEs is important for optimizing patients' quality of life and long-term outcomes. In this review, we summarized the mechanisms, common symptoms, early biomarkers, treatments, and future research directions of nAEs, in order to provide a comprehensive overview of immune checkpoint inhibitor-related nAEs targeting PD-1/PD-L1.

14.
Bioresour Technol ; 387: 129556, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37517712

RESUMEN

This study aimed to investigate the effects of biochar derived from different sources (wheat straw, sawdust and pig manure) on greenhouse gas and microplastics (MPs) mitigation during sewage sludge composting. Compared to the control, all biochar significantly reduced the N2O by 28.91-41.23%, while having no apparent effect on CH4. Sawdust biochar and pig manure biochar significantly reduced the NH3 by 12.53-23.53%. Adding biochar decreased the global warming potential during composting, especially pig manure biochar (177.48 g/kg CO2-eq.). The concentration of MPs significantly increased in the control (43736.86 particles/kg) compared to the initial mixtures, while the addition of biochar promoted the oxidation and degradation of MPs (15896.06-23225.11 particles/kg), with sawdust biochar and manure biochar were more effective. Additionally, biochar significantly reduced the abundance of small-sized (10-100 µm) MPs compared to the control. Moreover, biochar might regulate specific microbes (e.g., Thermobifida, Bacillus and Ureibacillus) to mitigate greenhouse gas emissions and MPs degradation.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Animales , Porcinos , Gases de Efecto Invernadero/análisis , Aguas del Alcantarillado , Microplásticos , Plásticos , Estiércol , Suelo , Carbón Orgánico/metabolismo , Metano/análisis , Nitrógeno/análisis
15.
Front Pharmacol ; 14: 1116098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124223

RESUMEN

Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC50 (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors.

16.
Small ; 19(36): e2301357, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127865

RESUMEN

The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.

17.
Front Pharmacol ; 14: 1154654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234717

RESUMEN

CDK4/6 plays a crucial role in various cancers and is an effective anticancer drug target. However, the gap between clinical requirements and approved CDK4/6 drugs is unresolved. Thus, there is an urgent need to develop selective and oral CDK4/6 inhibitors, particularly for monotherapy. Here, we studied the interaction between abemaciclib and human CDK6 using molecular dynamics simulations, binding free energy calculations, and energy decomposition. V101 and H100 formed stable hydrogen bonds with the amine-pyrimidine group, and K43 interacted with the imidazole ring via an unstable hydrogen bond. Meanwhile, I19, V27, A41, and L152 interacted with abemaciclib through π-alkyl interactions. Based on the binding model, abemaciclib was divided into four regions. With one region modification, 43 compounds were designed and evaluated using molecular docking. From each region, three favorable groups were selected and combined with each other to obtain 81 compounds. Among them, C2231-A, which was obtained by removing the methylene group from C2231, showed better inhibition than C2231. Kinase profiling revealed that C2231-A showed inhibitory activity similar to that of abemaciclib; additionally, C2231-A inhibited the growth of MDA-MB-231 cells to a greater extent than did abemaciclib. Based on molecular dynamics simulation, C2231-A was identified as a promising candidate compound with considerable inhibitory effects on human breast cancer cell lines.

18.
J Hazard Mater ; 445: 130596, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055952

RESUMEN

Microplastics (MPs), as an emerging pollutant, have been widely detected in aquatic, terrestrial, and atmospheric ecosystems. Recently, more researchers indicated that solid organic waste is also a crucial repository of MPs and has become a vital pollution source in ecosystems. Although the occurrence and fate of MPs in solid organic waste and the interaction between MPs and biological treatments have been explored, there still needs to be comprehensive summaries. Hence, this study reviewed the occurrence and characteristics of MPs in solid organic waste and organic fertilizers. Meanwhile, this study summarized the influence of MPs on biological treatments (composting and anaerobic digestion) and their degradation characteristics. MPs are abundant in solid organic waste (0-220 ×103 particles/kg) and organic fertilizer (0-30 ×103 particles/kg), PP and PE are the prominent MPs, and fibers and fragments are the main shapes. MPs can affect the carbon and nitrogen conversion during biological treatments and interfere with microbial communities. The MP's characteristics changed after biological treatments, which should further consider their potential ecological risks. This review points out the existing problems of MPs in organic waste recycling and provides directions for their treatment in the future.


Asunto(s)
Productos Biológicos , Microbiota , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos , Ecosistema , Carbono , Residuos Sólidos
19.
J Biol Eng ; 17(1): 32, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106420

RESUMEN

BACKGROUND: Non-involuting congenital hemangiomas (NICHs) are fully formed vascular tumors at birth with distinctive clinical, radiologic, and histopathological profiles. In the literature, there is no effective therapy strategy for patients with NICH except surgery. Currently, no cell line or animal model exists for studying the mechanism of NICH and drug validation. We plan to construct a new strategy by constructing NICH organoids for further study. RESULT: Here, we report a novel NICH organoid system construction and optimization process. Both HE and immunohistological staining exactly matched NICH tissue. We further performed transcriptome analysis to elucidate the characteristics of NICH organoids. Both NICH tissue and NICH organoids manifested similar trends in download sites. NICH organoids display novel features to new cells derived from organoids and show spectacular multiplication capacity. In the preliminary verification, we found that cells splitting from NICH organoids were human endothelial cells. Drug validation demonstrated that trametinib, sirolimus, and propranolol showed no inhibitory effects on NICH organoids. CONCLUSION: Our data show that this new NICH-derived organoid faithfully captured the features of this rare vascular tumor. Our study will boost further research on the mechanism of NICH and drug filtering in the future.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37086507

RESUMEN

Flonoltinib Maleate (FM) is a novel selective inhibitor of Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3). In this study, we developed an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to measure the plasma concentrations of FM in rats and dogs for pharmacokinetic studies. For chromatographic separation, we used a BEH C18 column (2.1 × 50 mm, 1.7 µm particle size) in HPLC. The mobile phase A consisted of a water solution containing 0.1% formic acid (FA) and 2 mM NH4OAc, mixed with acetonitrile (ACN) (V:V = 95:5). The mobile phase B was a water solution containing 0.1% FA and 2 mM NH4OAc, mixed with ACN (V:V = 5:95), which was used for gradient elution. We used multiple reactive ion detection (MRM) mode and electrospray ionization positive (ESI+) mode for quantitative analysis. The standard curve was linear in the concentration range of 0.5 to 500 ng/ml in rat and dog plasma. The intra-batch and inter-batch precision (RSD%) of FM in rat and dog plasma was less than 15%. The intra-batch and inter-batch accuracy was 88.3-106.5% and 92.0-100.6% in rats, and 94.7-106.6% and 95.3-103.8% in dogs, respectively. The RSD (%) of matrix factors (MF) normalized to the internal standard (IS) of FM in rat and dog plasma was ≤5.6% and ≤3.0%, respectively. The extraction recovery and carryover were considered acceptable. When the sample concentration was higher than the upper limit of quantitation (ULOQ), the 10-fold dilution was reliable within the limits of acceptability. The UPLC-MS/MS method developed in this study was successfully applied in measuring the pharmacokinetic parameters of FM in rats and dogs after intravenous and oral administration, laying a foundation for the preclinical pharmacokinetic study of FM and providing a reference for clinical pharmacokinetic studies.


Asunto(s)
Espectrometría de Masas en Tándem , Agua , Ratas , Perros , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Administración Oral , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...