Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(8): 5584-5610, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37027512

RESUMEN

Stimulator of interferon gene (STING) is a critical adaptor protein that has a pivotal role in triggering inherent immune responses to infection. STING-linked interferon production has been involved in anti-inflammation, anti-infection, and antitumor immunity. Herein, a series of amidobenzimidazole analogues as STING agonists were profiled for potency and drug-like properties. By structure-based modification and optimization based on mono-aminobenzimidazole (ABZI), analogues with nanomolar STING agonistic activities were obtained. Among them, compounds D59 and D61 significantly increased the transcription of IFN-ß and proinflammatory cytokine CXCL10, as well as dramatically induced the phosphorylation of STING downstream proteins in THP1 cells. Furthermore, compound D61 exhibited favorable pharmacokinetic properties and metabolic stabilities. In a CT-26 syngeneic mice-bearing tumor model, D61 effectively inhibited tumor growth with good tolerance when administered via intratumoral, intravenous, intraperitoneal, and oral routes. This research on orally bioavailable amidobenzimidazole analogues expands the diversity of chemical structures of agonists for STING-mediated immunotherapy.


Asunto(s)
Neoplasias , Receptores de Interferón , Animales , Ratones , Fosforilación , Interferones
2.
J Med Chem ; 66(4): 2804-2831, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36780419

RESUMEN

ABCB1 and ABCG2 are the important ATP-binding cassette (ABC) transporters associated with multidrug resistance (MDR). Herein, we designed a series of imidazo[1,2-a]pyridine derivatives as dual-target inhibitors of ABCB1 and ABCG2 through the scaffold hopping strategy. Compound Y22 displayed potential efflux function inhibitory toward both ABCB1 and ABCG2 (reversal fold: ABCB1 = 8.35 and ABCG2 = 2.71) without obvious cytotoxicity. Y22 also enhanced the potency of antiproliferative drugs in vitro. Mechanistic studies demonstrated that Y22 slightly suppressed ATPase activity but did not affect the protein expression of ABCB1 or ABCG2. Notably, Y22 exhibited negligible CYP3A4 inhibition and enhanced the antiproliferative activity of adriamycin in vivo by restoring the sensitivity of resistant cells. Thus, Y22 may be effective clinically in combination with common chemotherapy agents. In summary, Y22 is a potential dual-target inhibitor that reverses MDR by blocking the efflux function of ABCB1 and ABCG2.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Antineoplásicos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Proteínas de Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Piridinas/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Humanos
3.
Phys Rev Lett ; 126(2): 021802, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512174

RESUMEN

Proton decay is a smoking gun signature of grand unified theories (GUTs). Searches by Super-Kamiokande have resulted in stringent limits on the GUT symmetry-breaking scale. The large-scale multipurpose neutrino experiments DUNE, Hyper-Kamiokande, and JUNO will either discover proton decay or further push the symmetry-breaking scale above 10^{16} GeV. Another possible observational consequence of GUTs is the formation of a cosmic string network produced during the breaking of the GUT to the standard model gauge group. The evolution of such a string network in the expanding Universe produces a stochastic background of gravitational waves which will be tested by a number of gravitational wave detectors over a wide frequency range. We demonstrate the nontrivial complementarity between the observation of proton decay and gravitational waves produced from cosmic strings in determining SO(10) GUT-breaking chains. We show that such observations could exclude SO(10) breaking via flipped SU(5)×U(1) or standard SU(5), while breaking via a Pati-Salam intermediate symmetry, or standard SU(5)×U(1), may be favored if a large separation of energy scales associated with proton decay and cosmic strings is indicated. We note that recent results by the NANOGrav experiment have been interpreted as evidence for cosmic strings at a scale of ∼10^{14} GeV. This would strongly point toward the existence of GUTs, with SO(10) being the prime candidate. We show that the combination with already available constraints from proton decay allows us to identify preferred symmetry-breaking routes to the standard model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...