Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 89(11): 2894-2906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877620

RESUMEN

With the impact of global climate change and the urbanization process, the risk of urban flooding has increased rapidly, especially in developing countries. Real-time monitoring and prediction of flooding extent and drainage system are the foundation of effective urban flood emergency management. Therefore, this paper presents a rapid nowcasting prediction method of urban flooding based on data-driven and real-time monitoring. The proposed method firstly adopts a small number of monitoring points to deduce the urban global real-time water level based on a machine learning algorithm. Then, a data-driven method is developed to achieve dynamic urban flooding nowcasting prediction with real-time monitoring data and high-accuracy precipitation prediction. The results show that the average MAE and RMSE of the urban flooding and conduit system in the deduction method for water level are 0.101 and 0.144, 0.124 and 0.162, respectively, while the flooding depth deduction is more stable compared to the conduit system by probabilistic statistical analysis. Moreover, the urban flooding nowcasting method can accurately predict the flooding depth, and the R2 are as high as 0.973 and 0.962 of testing. The urban flooding nowcasting prediction method provides technical support for emergency flood risk management.


Asunto(s)
Inundaciones , Monitoreo del Ambiente/métodos , Ciudades , Modelos Teóricos , Cambio Climático
2.
J Environ Manage ; 364: 121386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865920

RESUMEN

Eutrophication is a serious threat to water quality and human health, and chlorophyll-a (Chla) is a key indicator to represent eutrophication in rivers or lakes. Understanding the spatial-temporal distribution of Chla and its accurate prediction are significant for water system management. In this study, spatial-temporal analysis and correlation analysis were applied to reveal Chla concentration pattern in the Fuchun River, China. Then four exogenous variables (wind speed, water temperature, dissolved oxygen and turbidity) were used for predicting Chla concentrations by six models (3 traditional machine learning models and 3 deep learning models) and compare the performance in a river with different hydrology characteristics. Statistical analysis shown that the Chla concentration in the reservoir river segment was higher than in the natural river segment during August and September, while the dominant algae gradually changed from Cyanophyta to Cryptophyta. Moreover, air temperature, water temperature and dissolved oxygen had high correlations with Chla concentrations among environment factors. The results of the prediction models demonstrate that extreme gradient boosting (XGBoost) and long short-term memory neural network (LSTM) were the best performance model in the reservoir river segment (NSE = 0.93; RMSE = 4.67) and natural river segment (NSE = 0.94; RMSE = 1.84), respectively. This study provides a reference for further understanding eutrophication and early warning of algal blooms in different type of rivers.


Asunto(s)
Clorofila A , Eutrofización , Hidrología , Aprendizaje Automático , Ríos , Ríos/química , China , Clorofila A/análisis , Monitoreo del Ambiente/métodos , Calidad del Agua , Clorofila/análisis
3.
Plant Dis ; 108(4): 1062-1072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640452

RESUMEN

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases affecting wheat throughout the world. Breeding and growing resistant wheat cultivars is one of the most economic and effective methods to control the disease, and as such, identifying and mapping the new and effective resistance genes is critical. Baidatou, a Chinese wheat landrace, shows excellent field resistance to powdery mildew. To identify the resistance gene(s) in Baidatou, 170 F7:8 recombinant inbred lines (RILs) derived from the cross Mingxian 169/Baidatou were evaluated for powdery mildew response at the adult-plant stage in the experimental fields in Yangling (YL) of Shaanxi Province and Tianshui (TS) in Gansu Province in 2019, 2020, and 2021. The relative area under disease progress curve (rAUDPC) of Mingxian 169/Baidatou F7:8 RILs indicated that the resistance of Baidatou to powdery mildew was controlled by quantitative trait loci (QTLs). Based on bulk segregation analysis combined with the 660K single nucleotide polymorphism (SNP) array and genotyping by target sequencing (16K SNP) of the entire RIL population, two QTLs, QPmbdt.nwafu-2AS and QPmbdt.nwafu-3AS, were identified, and these accounted for up to 44.5% of the phenotypic variation. One of the QTLs was located on the 3.32 cM genetic interval on wheat chromosome 2AS between the kompetitive allele-specific PCR markers AX-111012288 and AX_174233809, and another was located on the 9.6 cM genetic interval on chromosome 3AS between the SNP markers 3A_684044820 and 3A_686681822. These markers could be useful for successful breeding of powdery mildew resistance in wheat.


Asunto(s)
Ascomicetos , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Cromosomas de las Plantas/genética , China , Fitomejoramiento
4.
Mar Pollut Bull ; 202: 116296, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579444

RESUMEN

The settling of microplastics (MPs) in the initial acceleration fall stage, i.e., before reaching the terminal settling velocity, has not been investigated, which is however important for understanding MP transport and fate. MP disks sized 3-5 mm, of three shapes and made of three polymers (1.038-1.343 g/cm3) were examined. Five release ways and three release angles (0°, 45°, 90°) were used. MP disks with the release angle of 0° start to zigzag immediately after the release, while the MP disks with the release angles of 45° and 90° first adjust to a horizontal position and then zigzag. The adjustment distances in the vertical and horizontal directions, as well as the maximum vertical settling velocity, are influenced by MP density, size, release angle and release way. The detailed settling trajectory and velocity were also analyzed. Finally, the time-changing drag coefficient of MP disks was examined and discussed.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Environ Sci Pollut Res Int ; 30(14): 40534-40550, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36622598

RESUMEN

A novel heterogeneous catalyst named MoS2/MIL-53(Fe, Cu) (MMFC) was prepared by hydrothermal method and applied in a heterogeneous electro-Fenton (hetero-EF) system for lomefloxacin (LOM) degradation in this work. Under the optimal conditions of current density 3 mA/cm2, catalyst dosage 0.100 g/L, and initial pH 6, 93.5% LOM (2 mg/L) removal efficiency was achieved in the MMFC hetero-EF system within 60 min, indicating an obvious improvement compared with the MIL-53(Fe, Cu) hetero-EF system. The good catalytic activity was attributed to more effective active sites of the catalyst and the conversion of Fe(II)/Fe(III) and Cu(I)/Cu(II) promoted by Mo(IV) in MoS2, which could be inferred by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) characterizations. The reusability and stability of MMFC were explored based on five cyclic experiments, and the average degradation efficiency reached 73.9%. Furthermore, the hetero-EF system could achieve the total removal of moxifloxacin and tetracycline within 6 min and 40 min, respectively. Quenching experiments revealed that the hydroxyl radicals (·OH) were the main reactive radicals while superoxide radicals (·O2-) and singlet oxygen (1O2) played a certain part in LOM degradation. Finally, the possible mechanism of the hetero-EF process and LOM degradation pathways were proposed, including substitution, elimination, and cleavage of ring structures. Accounting for good catalytic performance, low preparation cost, and satisfactory versatility, the MMFC exhibited good potential to work as a hetero-EF catalyst for wastewater treatment.


Asunto(s)
Molibdeno , Contaminantes Químicos del Agua , Hierro/química , Antibacterianos , Fluoroquinolonas , Peróxido de Hidrógeno/química , Catálisis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
6.
Environ Technol ; 44(15): 2270-2279, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35001853

RESUMEN

Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and the overall performance of the infiltration systems. In this paper, a novel processing for alleviating bioclogging by filter media surface hydrophobic modification was presented. Two-dimensional porous media cells were used to observe the influence of hydrophobic modification on biofilm growth in the pore structure. Moreover, two continuous-flow columns packed with gravel, one of which half gravel was hydrophobically modified, were operated with artificial wastewater to verify the effect of hydrophobic modification on bioclogging alleviation. The results showed that the biofilm growth in the cell with hydrophobic modification was slow, and the biomass was less and liable to wipe off after hydrophobic treatment. Meanwhile, the hydraulic efficiency of the flow seepage field was also improved after hydrophobic treatment. The column tests results showed that the hydraulic conductivity of the filter bed with hydrophobic modification (Column B) decreased more slowly than that of another without hydrophobic modification (Column A). Column B had the hydraulic conductivity (k) of 0.66 cm/s in the final stage of the experiment, while the k of Column A was 0.14 cm/s. It verified that hydrophobic modification of partial filter media can alleviate the bioclogging problem of the infiltration systems to some extent. The results provide a new idea and potential technical support for solving bioclogging problem.


Asunto(s)
Biopelículas , Aguas Residuales , Biomasa , Porosidad
7.
Environ Technol ; 44(10): 1438-1449, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34738505

RESUMEN

Novel magnetic molecularly imprinted polymers (MMIP) were prepared for selective removal of norfloxacin by effectively utilizing photocatalytic degradation and magnetic separation techniques. The imprinted material with titanium layer and multihole surface showed an excellent photocatalytic property. In this paper, the kinetics of photocatalytic degradation of norfloxacin by MMIP was explored, and the influences of environmental factors, including solution pH, humic acid, common ions and water media on photocatalytic performance of MMIP were elucidated. The results showed that MMIP had good adaptability and could degrade norfloxacin within 60 min, but the degradation rate constant decreased in surface water. Based on the identification of intermediate products, the possible degradation pathways of norfloxacin were analysed, speculating that it might be degraded into small molecules in the form of de-piperazine ring, de-carboxyl group and de-fluorine. Moreover, the mineralization ratio of norfloxacin could reach 84.2% after ultraviolet irradiation for 150 min, and the low cobalt release of MMIP enhanced the security of the material. The results of adsorption and degradation cycle tests showed that MMIP obtained by molecular imprinting technology had excellent performance in sustainable use for micro organic pollutants removal.


Asunto(s)
Impresión Molecular , Norfloxacino , Norfloxacino/química , Polímeros Impresos Molecularmente , Polímeros/química , Adsorción , Fenómenos Magnéticos , Agua
8.
Environ Res ; 219: 115122, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549494

RESUMEN

To elucidate the effect of pore structure on bioclogging and seepage flow in bioreactors, we used X-ray computed tomography (X-CT) to investigate the changes in seepage flow of porous media in zeolite, gravel and ceramsite bioreactors with biofilm growth by injecting a non-ionic contrast medium iohexol. Based on the X-CT images using a ball-and-stick model, the highest average pore radius (R‾) and the average pore throat radius (r‾) in the ceramsite column were found under the initial conditions, which facilitated its permeability. The pore and throat of the gravel column were small and homogeneous relatively. Biofilm growth decreased the pore and pore throat in the columns. The total throat area of zeolite, gravel and ceramsite columns declined by 74%, 73% and 79% respectively. The zeolite column had the highest average pore throat, which contributed to its maximum conductivity subsequently after biofilm growth. Further, the fractal dimensions of the pore structure increased with biofilm growth, especially in the zeolite and ceramsite columns. The heterogeneity of the porous media was reinforced by the biofilm growth in the zeolite and ceramsite columns due to their higher heterogeneity initially. We also observed that an increase in heterogeneity of porous medium amplified the preferential flow and flow heterogeneities, especially in the zeolite and ceramsite columns.


Asunto(s)
Zeolitas , Porosidad , Reactores Biológicos , Biopelículas , Permeabilidad
9.
Sci Total Environ ; 855: 158913, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36411604

RESUMEN

The sewer system is a significant source of hydrogen sulfide (H2S) and greenhouse gases which has attracted extensive interest from researchers. In this study, a novel combined dosing strategy using nitrate and calcium peroxide (CaO2) was proposed to simultaneously control sulfide and greenhouse gases, and its performance was evaluated in laboratory-scale reactors. Results suggested that the addition of nitrate and CaO2 improved the effectiveness of sulfide control. And the combination index method further proved that nitrate and CaO2 were synergistic in controlling sulfide. Meanwhile, the combination of nitrate and CaO2 substantially reduced greenhouse gas emissions, especially the carbon dioxide (CO2) and methane (CH4). The microbial analysis revealed that the combined addition greatly stimulated the accumulation of nitrate reducing-sulfide oxidizing bacteria (NR-SOB) that participate in anoxic nitrate-dependent sulfide oxidation, while the abundance of heterotrophic denitrification bacteria (hNRB) was reduced significantly. Moreover, the presence of oxygen and alkaline chemicals generated by CaO2 facilitated the inhibition of sulfate-reducing bacteria (SRB) activities. Therefore, the nitrate dosage was diminished significantly. On the other hand, the generated alkaline chemicals promoted CO2 elimination and inhibited the activities of methanogens, leading to a decrease of CO2 and CH4 fluxes, which facilitated elimination of greenhouse effects. The intermittent dosing test showed that the nitrate and CaO2 could be applied intermittently for sulfide removal. And the chemical cost of intermittent dosing strategy was reduced by 85 % compared to the continuous dosing nitrate strategy. Therefore, intermittent dosing nitrate combined with CaO2 is probably an effective and economical approach to control sulfide and greenhouse gases in sewer systems.


Asunto(s)
Gases de Efecto Invernadero , Nitratos , Aguas del Alcantarillado/microbiología , Dióxido de Carbono , Oxidación-Reducción , Sulfuros , Óxidos de Nitrógeno
10.
Environ Sci Pollut Res Int ; 30(7): 18755-18763, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36219300

RESUMEN

Bioclogging is the most crucial operation problem of the constructed wetlands, which reduce its removal efficiency and life span. A strategy through properly increasing hydraulic loading is proposed in this study to alleviate the bioclogging for CWs. The two-dimensional porous media flow cell (2D PMFC) test indicated that a quadratic correlation was found between local biofilms growth rate and the near-wall Reynolds number (r > 0.765, p < 0.05). The biofilm growth rate declined with the flowrate when Re exceeded about 6.0. It was also found that the higher flowrate (6 mL/min) lead to the homogeneous biofilm and velocity distribution in the PMFC. The column test indicated that the highest hydraulic loading (9.2 cm/h) produced the smallest decrease in hydraulic conductivity, which was 80 times more than that of low hydraulic load (3.0 cm/h) at the end (40 days) of experiment. Moreover, the relatively homogenized distribution of biofilm was found along the column with the highest hydraulic loading, which confirmed that the proper increase in hydraulic loading can alleviate bioclogging.


Asunto(s)
Hidrodinámica , Humedales , Modelos Teóricos , Biopelículas , Porosidad , Eliminación de Residuos Líquidos/métodos
11.
Materials (Basel) ; 15(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35888457

RESUMEN

The time-dependent characteristics of transparent soil strength, composed of magnesium lithium phyllosilicate, is important for applying a thixotropic clay surrogate. The gas injection method was employed to obtain the strength, represented as cracking pressure, which was then correlated to variables including rest time, disturbance time, and recovery time. Three concentrations (3, 4, and 5%) were tested. The results show that the strength was directly proportional to the rest time, recovery time, and concentration while the disturbance time reversed. The calculated limit strengths for 3%, 4%, and 5% transparent soils were 3.831 kPa, 8.849 kPa, and 12.048 kPa, respectively. Experimental data also showed that the residual strength for higher concentration transparent soil was more significant than the lower ones. The elastic property immediately generated partial strength recovery after disturbance, while the viscosity property resulted in a slow recovery stage similar to the rest stage. The strength recovery rate was also sensitive to concentration. Furthermore, the strength with 3%, 4%, and 5% concentrations could regain limit values after sufficient recovery, which were calculated as 4.303 kPa, 8.255 kPa, and 14.884 kPa, respectively.

12.
Environ Sci Pollut Res Int ; 29(56): 84487-84503, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35788479

RESUMEN

Lake Taihu is an important drinking water source for cities in the Yangtze River Delta region, while the dramatic fluctuation in turbidity has caused severe problems for local waterwork management. The effects of sediment resuspension and migration on turbidity of water intake in a waterworks located in the south of Lake Taihu are studied. Because the sediment behavior induced by wind disturbance was believed to be the main factor for the matter, the effect of wind field on the hydrodynamics and sediment distribution of Lake Taihu was conducted based on a wind-driven numerical model. The obtained results indicate that wind direction was more influential on the structure of flow and wave fields, while wind speed contributed more to the field intensity. The suspended sediment concentration (SSC) of water intake area was most sensitive to onshore winds, which led to significant increase in suspended sediment concentration at 3 m/s, while for alongshore winds, the incipient speed was 4 m/s, and offshore winds were less influential. In addition, the suspended sediment of the water intake area was primarily migrated from other erosion regions rather than local suspended particles. A 7-h lag was found between SSC and the measured turbidity confirmed the lag effect of wind disturbance on turbidity change. The high consistency between the 2 series demonstrated the potential of this method to turbidity prediction when combined with the weather forecast technique.


Asunto(s)
Lagos , Viento , Lagos/química , Sedimentos Geológicos/química , Agua/química , Hidrodinámica , China , Monitoreo del Ambiente
13.
ACS Appl Mater Interfaces ; 14(24): 28014-28020, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671045

RESUMEN

The inorganic-rich solid electrolyte interphase (SEI) has attracted wide attention due to its good compatibility with the lithium (Li) metal anode. Herein, a stable solvent-derived inorganic-rich SEI is constructed from a hydrofluoroether-diluted low-concentration electrolyte, which simultaneously possesses the merits of nonflammability and low cost (0.5 M LiPF6). The addition of hydrofluoroether enhances the coordination strength between Li+ and solvents, altering the decomposition path of solvents to yield more Li2O. The abundant Li2O crystals endow the SEI with improved passivating ability and ion conductivity. The 30 µm Li|NCM523 (3.8 mAh cm-2) batteries with solvent-derived Li2O-rich SEI deliver 96.1% capacity retention after 200 cycles. Notably, a 1.1 Ah Li|NCA pouch cell delivers an energy density of 374 Wh kg-1 and achieves 45 stable cycles. This study points out that tuning the decomposition of solvents provides a new approach to construct stable inorganic-rich SEI for practical Li-metal batteries.

14.
Environ Sci Pollut Res Int ; 29(38): 58088-58096, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35362887

RESUMEN

Improving the removal rate of pentavalent antimony (Sb(V)) by electrocoagulation (EC) is of great significance to the environment. In this paper, the EC with composite scrap iron and manganese filings as an anode (Fe-Mn EC) was investigated for the high-efficiency elimination of Sb(V). The results showed that Fe-Mn EC can enhance the removal of Sb(V) by 11.18-17.36% compared with the traditional iron electrocoagulation (Fe EC). Meanwhile, Sb(V) removal increased with the growth of current concentration as well as Mn content in the anode. However, the Sb(V) removal rate was inhibited when Mn content exceeded 20%. Moreover, the flocs generated during the Fe and Fe-Mn EC (Fe flocs and Fe-Mn flocs) were analyzed both structurally and theoretically using XRD, SEM, BET, and adsorption experiment. The results indicated that the components of Fe-Mn flocs were mostly Mn-substituted FeOOH, which appeared as the structure of nanometer flakes and large internal surface areas. Meanwhile, the Fe-Mn flocs had the ability of much faster Sb(V) adsorption rate; its Sb(V) adsorption capacity was 2.5 times more than that of the Fe flocs. The thermodynamics constants of both Fe and Fe-Mn flocs proved that adsorption was associated with monolayer physical adsorption. To the best of our knowledge, this is the first report of the electrocoagulation with composite scrap iron-manganese as an anode to remove Sb, which provide a new idea and potential technical support for the removal of Sb(V).

15.
Sci Total Environ ; 831: 154843, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35351503

RESUMEN

Despite the growing interest, limited studies have been conducted on LID spatial allocation optimization (SAO) at neighborhood scale, and no study has applied modifications to the optimization algorithm to improve its performance. In this study, such a new LID SAO system was proposed, which integrated a hydrological computing engine (SWMM) with an optimization algorithm (PICEA-g) using a programming language (MATLAB) as the platform. The specific modifications to the PICEA-g algorithm include: new methodologies for initializing candidate solutions, defining goal vector boundaries and enhanced genetic operators. The new LID SAO system was tested in a typical urban residential neighborhood in western Canada, and optimal solutions for LID implementation (bioretention, rain garden, permeable pavement and green roof) were obtained. The results showed that promising hydrologic benefits of reducing peak flow rate and total volume of stormwater runoff from the catchment, can be achieved with a relatively low cost. The LID SAO system provides users with flexibility and feasibility for a variety of drainage locations, scales and objectives (e.g., water quality).


Asunto(s)
Picea , Movimientos del Agua , Hidrología , Modelos Teóricos , Lluvia , Calidad del Agua
17.
Sci Total Environ ; 816: 151581, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34774952

RESUMEN

Nitrate dosing is commonly used for controlling hydrogen sulfide in sewer systems. However, it may potentially facilitate N2O emission due to the denitrification process promoted by nitrate addition. In this study, lab-scale sewer reactors were operated to investigate the impact of nitrate addition on N2O production in sewer systems. Results showed that the N2O flux even increased by six times with the addition of nitrate when dissolved oxygen (DO) in the wastewater exceeded 0.4 mg/L. Principal component analysis showed that the N2O concentration was notably affected by DO and oxidation-reduction potential (ORP) in the wastewater. Furthermore, it was founded that N2O flux had a strong linear relationship with the DO concentration in the batch test. The microbial analysis found that the nosZ possessing organisms decreased significantly in the micro-aerobic condition and the copy numbers of nosZ gene declined consequently. It indicated that the inhibition of N2O reduced to N2 was responsible for significant accumulation and emission of N2O in the micro-aerobic condition. Given the gravity sewers are not completely anaerobic, the DO concentration is ranged from 0.1 to 2.4 mg/L in gravity sewers with the partially filled flow. Therefore, more attention should be paid to the N2O production when nitrate dosing for hydrogen sulfide controlling in gravity sewers.


Asunto(s)
Sulfuro de Hidrógeno , Nitratos , Desnitrificación , Óxidos de Nitrógeno , Óxido Nitroso/análisis , Oxígeno/análisis , Aguas del Alcantarillado
18.
J Hazard Mater ; 424(Pt B): 127527, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879520

RESUMEN

Nitrate has been widely used in sewer systems for sulfide control. However, significant chemical consumption and the loss of carbon source were observed in previous studies. To find a feasible and cost-effective control strategy of the sulfide control, the effect of nitrate combined with sodium nitroprusside (SNP) dosage strategy was tested in lab-scale sewer biofilm reactors. Results showed that nitrate and SNP were strongly synergistic, with 30 mg N/L nitrate and 20 mg/L SNP being sufficient for sulfide control in this study. While large amount of nitrate alone (100 mg N/L) is required to achieve the same sulfide control effectiveness. Meanwhile, the nitrate combined with SNP could reduce the organic carbon source loss by 80%. Additionally, the high-throughput sequencing results showed that the relative abundance of autotrophic, nitrate reducing-sulfide oxidizing bacteria genera (a-NR-SOB) such as Arcobacter and Sulfurimonas was increased by around 18%, while the heterotrophic, nitrate-reducing bacteria (hNRB) such as Thauera was substantially reduced. It demonstrated that the sulfide control was mainly due to the a-NR-SOB activity under the nitrate and SNP dosing strategy. The microbial functional prediction further revealed that nitrate and SNP promoted the dissimilatory nitrate reduction process which utilizes sulfide as an effective electron donor. Moreover, economic assessment indicated that using the combination of nitrate and SNP for sulfide control in sewers would lower the chemical costs by approximately 35% compared with only nitrate addition.


Asunto(s)
Carbono , Nitratos , Biopelículas , Nitroprusiato , Oxidación-Reducción , Sulfuros
19.
Nucleic Acid Ther ; 31(6): 392-403, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34388351

RESUMEN

Steric-blocking oligonucleotides (SBOs) are short, single-stranded nucleic acids designed to modulate gene expression by binding to RNA transcripts and blocking access from cellular machinery such as splicing factors. SBOs have the potential to bind to near-complementary sites in the transcriptome, causing off-target effects. In this study, we used RNA-seq to evaluate the off-target differential splicing events of 81 SBOs and differential expression events of 46 SBOs. Our results suggest that differential splicing events are predominantly hybridization driven, whereas differential expression events are more common and driven by other mechanisms (including spurious experimental variation). We further evaluated the performance of in silico screens for off-target splicing events, and found an edit distance cutoff of three to result in a sensitivity of 14% and false discovery rate (FDR) of 99%. A machine learning model incorporating splicing predictions substantially improved the ability to prioritize low edit distance hits, increasing sensitivity from 4% to 26% at a fixed FDR of 90%. Despite these large improvements in performance, this approach does not detect the majority of events at an FDR <99%. Our results suggest that in silico methods are currently of limited use for predicting the off-target effects of SBOs, and experimental screening by RNA-seq should be the preferred approach.


Asunto(s)
Oligonucleótidos , Transcriptoma , Empalme Alternativo , Oligonucleótidos/genética , Oligonucleótidos Antisentido , ARN/genética , ARN/metabolismo , Empalme del ARN/genética
20.
Nanoscale ; 13(16): 7862, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33881118

RESUMEN

Retraction of 'Size-selected silver nanoparticles for MALDI-TOF mass spectrometry of amyloid-beta peptides' by Feng Ding et al., Nanoscale, 2018, 10, 22044-22054, DOI: 10.1039/C8NR07921H.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...