RESUMEN
Osteoporosis is a metabolic condition distinguished by the degradation of bone microstructure and mechanical characteristics. Traditional Chinese medicine (TCM) has been employed in China for the treatment of various illnesses. Naringin, an ingredient found in Drynariae TCM, is known to have a significant impact on bone metabolism. For this research, we studied the precise potential effect of Drynaria Naringin on protecting against bone loss caused by stress deficiency. In this study, a tail-suspension (TS) test was performed to establish a mouse model with hind leg bone loss. Some mice received subcutaneous injections of Drynaria Naringin for 30 d. Trabecular bone microarchitecture was evaluated using micro-computed tomography analysis and bone histological analysis. Bone formation and resorption markers were quantified in blood samples from mice or in the supernatant of MC3T3-E1 cells by ELISA analysis, Western blotting, and PCR. Immunofluorescence was utilized to visualize the location of ß-catenin. Additionally, siRNA was employed to knockdown-specific genes in the cells. Our findings highlight the efficacy of Drynaria Naringin in protecting against the deterioration of bone loss and promoting bone formation and Rspo1 expression in a mouse model following the TS test. Specifically, in vitro experiments also indicated that Drynaria Naringin may promote osteogenesis through the Wnt/ß-catenin signalling pathway. Moreover, our results suggest that Drynaria Naringin upregulates the expression of Rspo1/Lgr4, leading to the promotion of osteogenesis via the Wnt/ß-catenin signalling pathway. Therefore, Drynaria Naringin holds potential as a therapeutic medication for osteoporosis. Drynaria Naringin alleviates bone loss deterioration caused by mechanical stress deficiency through the Rspo1/Lgr4-mediated Wnt/ß-catenin signalling pathway.
Asunto(s)
Osteoporosis , Polypodiaceae , Animales , Ratones , beta Catenina/metabolismo , Diferenciación Celular , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Polypodiaceae/química , Estrés Mecánico , Vía de Señalización Wnt , Microtomografía por Rayos X/efectos adversosRESUMEN
Chordin-like 1 (CHRDL1) is a secreted glycoprotein with repeated cysteine-rich domains, which can bind to BMPs family ligands. Although it has been reported to play important roles in several systems, the exact roles of CHRDL1 on human bone mesenchymal stem cells (hBMSCs) osteogenesis remain to be explored. The present study aimed to investigate the roles of CHRDL1 on the osteogenic differentiation of hBMSCs and the underlying molecular mechanisms. We found that CHRDL1 was upregulated during hBMSCs osteogenesis, and rhBMP-4 administration could enhance CHRDL1 mRNA expression in a dose and time dependent manner. Knockdown of CHRDL1 did not affect hBMSCs proliferation, but inhibited the BMP-4-dependent osteogenic differentiation, showing decreased mRNA expression levels of osteogenic markers and reduced mineralization. On the contrary, overexpression of CHRDL1 enhanced BMP-4 induced osteogenic differentiation of hBMSCs. Moreover, in vivo experiments by transplanting CHRDL1 gene modified hBMSCs into nude mice defective femur models displayed higher new bone formation in CHRDL1 overexpression groups, but lower new bone formation in CHRDL1 knockdown groups, compared with control groups. In consistent with the bone formation rate, there were increased CHRDL1 protein expression in new bone formation regions of defective femur in CHRDL1 overexpression groups, while reduced CHRDL1 protein expression in CHRDL1 knockdown groups compared with control groups. These indicate that CHRDL1 can promote osteoblast differentiation in vivo. Furthermore, the mechanisms study showed that CHRDL1 improved BMP-4 induced phosphorylation of SMAD1/5/9 during osteogenic differentiation of hBMSCs. Besides, promotion of osteogenic differentiation and the activation of SMAD phosphorylation by CHRDL1 can be blocked by BMP receptor type I inhibitor LDN-193189. In conclusion, our results suggested that CHRDL1 can promote hBMSCs osteogenic differentiation through enhancing the activation of BMP-4-SMAD1/5/9 pathway.