RESUMEN
BACKGROUND: Among heart failure patients with obesity, the prognosis is better than those with normal weight, a phenomenon known as the obesity paradox. However, it is unclear whether lipoprotein levels play a mediating role in the machine of the obesity paradox. METHODS: The study included 1663 heart failure patients hospitalized from January, 2019 through August, 2022. Kaplan-Meier survival analysis and Log-rank tests were performed for three endpoints in order to determine cumulative event-free survival. We investigated the correlation between Body Max Index (BMI) and outcomes by multifactorial Cox models. Mediation analysis was applied to study the presence and magnitude of mediation effects of triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1 and apolipoprotein B, with the association between BMI and endpoints. RESULTS: In MACCEs, the median follow-up period was 679 days. In Cox model, compared with the underweight group, a high BMI level was significantly associated with lower all-cause mortality (HR=0.47, 95%CI 0.31~0.69, p<0.001, obese vs underweight), cardiovascular mortality (HR=0.46, 95%CI 0.30~0.73, p<0.001, obese vs underweight) and the incidence of MACCEs (HR=0.68, 95%CI 0.53~0.88, p=0.003, obese vs underweight). Mediation analysis revealed that TG was the strongest mediator between BMI and endpoints, with proportions of mediated effects of 6.6% (95%CI 2.2%~18.0%, p=0.0258, in all-cause death),7.0% (95%CI 2.3%~18.9%, p=0.0301, in cardiovascular death) and 10.2% (95%CI 3.3%~27.4%, p=0.0185, in MACCEs). CONCLUSIONS: There is an "obesity paradox" in patients with heart failure, and lipoprotein levels especially triglyceride mediate the association between BMI and cardiovascular outcomes.
Asunto(s)
Biomarcadores , Índice de Masa Corporal , Insuficiencia Cardíaca , Lipoproteínas , Análisis de Mediación , Obesidad , Humanos , Masculino , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Femenino , Anciano , Obesidad/sangre , Obesidad/diagnóstico , Obesidad/mortalidad , Obesidad/epidemiología , Obesidad/complicaciones , Persona de Mediana Edad , Medición de Riesgo , Biomarcadores/sangre , Lipoproteínas/sangre , Factores de Tiempo , Factores de Riesgo , Pronóstico , Supervivencia sin Progresión , Anciano de 80 o más Años , Estudios Retrospectivos , IncidenciaRESUMEN
The ketogenic diet (KD) is a very low-carbohydrate, high-fat diet that reduces glucose catabolism and enhances ß-oxidation and ketogenesis. While research in female rodents is limited, research in male rodents suggests that ketogenic interventions initiated at midlife may slow age-related cognitive decline, as well as preserve muscle mass and physical function later in life. This study aimed to investigate the effects of a KD on global metabolic changes in middle-aged females to inform potential mechanisms behind the anti-aging effects of this diet in an understudied sex. Targeted 1H-NMR metabolomics was conducted on serum, the liver, the kidney, and the gastrocnemius muscle, as well as the cortex and the hippocampal brain regions in 16-month-old female mice after a 2-month KD. Analysis of the serum and liver metabolome revealed that the 2-month KD resulted in increased concentrations of fatty acid catabolism metabolites, as well as system-wide elevations in ketones, consistent with the ketogenic phenotype. Metabolites involved in the glucose-alanine cycle were altered in the gastrocnemius muscle, serum and the liver. Other tissue-specific alterations were detected, including distinct effects on hepatic and renal one-carbon metabolism, as well as region specific differences in metabolism across hippocampal and cortical parts of the brain. Alterations to hippocampal metabolites involved in myelinogenesis could relate to the potential beneficial effects of a KD on memory.
RESUMEN
Spherical nucleic acids (SNAs) are nanostructures with the DNA arranged radially on the surface, thus allowing specific binding with cancer cells expressing high levels of scavenger receptor-A to enhance cellular uptake. However, conventional carriers for SNAs are cytotoxic, not degradable and difficult to deliver multiple payloads. In this study, we developed charge-reversible coordination-crosslinked SNAs to deliver dual anti-cancer genes and ferroptosis payload for anti-cancer purposes. To this end, we modified poly(lactic acid) (PLA) with functionalized side chains to allow its binding with antisense oligonucleotides (ASOs) and siRNA, annealed two single-stranded RNAs to obtain double-stranded RNA, and introduced a polyethylene glycol (PEG) shell to enhance the circulation time. Additionally, the ferroptosis payload imidazole was coordinated with iron ions as a core-crosslinked group to enhance the stability of SNAs and efficiency to kill cancer cells. We demonstrated that this novel nanocomplex efficiently internalized and killed CT-26 cells in vitro. In vivo data confirmed that the dual gene delivery system successfully targeted CT-26 tumors in tumor-bearing BALB/c mice, and exhibited strong tumor suppression ability, without inducing adverse toxic effects. Taken together, our dual gene therapy system offered an enhanced anti-tumor solution by simultaneously delivering dual anti-cancer genes and ferroptosis payload in tumor microenvironment.
Asunto(s)
Ferroptosis , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Animales , Ratones , Línea Celular Tumoral , Humanos , Ratones Endogámicos BALB C , Técnicas de Transferencia de Gen , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Nucleicos/química , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Terapia Genética/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/químicaRESUMEN
Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.
Asunto(s)
Aminoácidos de Cadena Ramificada , Diabetes Mellitus Experimental , Neuropatías Diabéticas , Canal de Potasio Kv.1.2 , Transportador de Aminoácidos Neutros Grandes 1 , Regulación hacia Arriba , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Humanos , Masculino , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Modelos Animales de Enfermedad , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Neuralgia/metabolismo , Neuralgia/genética , Femenino , Ratones Endogámicos C57BL , Persona de Mediana EdadRESUMEN
We investigate the effect of a cavity on nonlinear two-photon transitions of a molecular system and we analyze how such an effect depends on the cavity quality factor, the field enhancement, and the possibility of dephasing. We find that the molecular response to strong light fields in a cavity with a variable quality factor can be understood as arising from a balance between (i) the ability of the cavity to enhance the field of an external probe and promote multiphoton transitions more easily and (ii) the fact that the strict selection rules on multiphoton transitions in a cavity support only one resonant frequency within the excitation range. Although our simulations use a classical level description of the radiation field (i.e., we solve Maxwell-Bloch or Maxwell-Liouville equations within the Ehrenfest approximation for the field-molecule interaction), based on experience with this level of approximation in the past studies of plasmonic and polaritonic systems, we believe that our results are valid over a wide range of external probing.
RESUMEN
The Ketogenic Diet (KD) improves memory and longevity in aged C57BL/6 mice. We tested 7 months KD vs. control diet (CD) in the mouse Alzheimer's Disease (AD) model APP/PS1. KD significantly rescued Long-Term-Potentiation (LTP) to wild-type levels, not by changing Amyloid-ß (Aß) levels. KD's 'main actor' is thought to be Beta-Hydroxy-butyrate (BHB) whose levels rose significantly in KD vs. CD mice, and BHB itself significantly rescued LTP in APP/PS1 hippocampi. KD's 6 most significant pathways induced in brains by RNAseq all related to Synaptic Plasticity. KD induced significant increases in synaptic plasticity enzymes p-ERK and p-CREB in both sexes, and of brain-derived neurotrophic factor (BDNF) in APP/PS1 females. We suggest KD rescues LTP through BHB's enhancement of synaptic plasticity. LTP falls in Mild-Cognitive Impairment (MCI) of human AD. KD and BHB, because they are an approved diet and supplement respectively, may be most therapeutically and translationally relevant to the MCI phase of Alzheimer's Disease.
Asunto(s)
Enfermedad de Alzheimer , Dieta Cetogénica , Humanos , Ratones , Animales , Anciano , Potenciación a Largo Plazo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Plasticidad NeuronalRESUMEN
Vegetation is vital to the ecosystem, contributing to the global carbon balance, but susceptible to the impacts of climate change. Monitoring vegetation drought remains challenging due to the lack of widely accepted drought indices. This study focused on vegetation, and simulated the vegetation suitable water demand and soil available water supply (calculated by Remote-sensing-based Water Balance Assessment Tool model). The standardized Vegetation Water deficit Index (SVWDI) was established by calculating the vegetation water deficit, which reflects the response of vegetation to drought. We examined the spatiotemporal evolution of vegetation drought on the Loess Plateau and evaluated the applicability of standardized vegetation water deficit index. Our findings revealed that the standardized vegetation water deficit index demonstrated an overall upward trend across different time scales from 1991 to 2020. Drought conditions were concentrated in the first 20 years of the study period, but vegetation drought on the Loess Plateau has been alleviated in the past decade. Moreover, as the time scale extended, the trend of SVWDI generally decreased, with approximately 49.50 % (1-month scale), 46.66 % (3-month scale), 47.08 % (12-month scale), and 32.16 % (24-month scale) of the grid areas experiencing increased SVWDI. The correlation between SVWDI and tree-ring width index (TRWI) performed well under all precipitation gradients, but the Palmer drought severity index (PDSI) was only highly correlated with TRWI in regions with low precipitation. In terms of the relationship with vegetation health, SVWDI demonstrated the highest correlation with the normalized difference vegetation index (NDVI) across different time scales, followed by PDSI and standardized precipitation evapotranspiration index (SPEI). This study provides insights into the evolution of vegetation drought in response to climate change. The findings can guide initiatives such as returning farmland to forest and grassland on the Loess Plateau to aid climate change adaptation strategies.
Asunto(s)
Sequías , Ecosistema , Agua , Suelo , Bosques , Plantas , Árboles , Cambio Climático , ChinaRESUMEN
The nature of catalysis has been hotly pursued for over a century, and current research is focused on understanding active centers and their electronic structures. Herein, the concept of conductive catalysis is proposed and verified by theoretical simulations and experimental observations. Metallic systems containing buried catalytically active transitional metals and exposed catalytically inert main group metals are constructed, and the electronic interaction between them via metallic bonding is disclosed. Through the electronic interaction, the catalytic properties of subsurface transitional metals (Pd or Rh) can be transferred to outermost main group metals (Al or Mg) for several important transformations like semi-hydrogenation, Suzuki-coupling and hydroformylation. The catalytic force is conductive, in analogy with the magnetic force and electrostatic force. The traditional definition of active centers is challenged by the concept of conductive catalysis and the electronic nature of catalysis is more easily understood. It might provide new opportunities for shielding traditional active centers against poisoning or leaching and allow for precise regulation of their catalytic properties by the conductive layer.
RESUMEN
With the rapid economic development of coastal cities, the discharge of substantial amounts of heavy metal pollutants poses a serious hazard to mangroves; however, the potential sources of heavy metals and the resulting health risks are not fully understood. In this study, we analyzed the contents, sources, and ecological and health risks of heavy metal contamination in mangrove sediments from the northern margin of China. The accumulation of heavy metals in mangroves was primarily driven by five potential sources, namely agricultural (33.5 %), natural sources (21.3 %), industrial (19.1 %), aquaculture (14.3 %), and traffic (11.8 %). The assessment of health risks using a probabilistic approach demonstrated that noncarcinogenic risks were within acceptable limits for all populations. It was worth noting that both noncarcinogenic and carcinogenic risks were greater in children than in adults. Analysis of source-oriented health risks revealed that agricultural sources and As and Cd were priority sources and elements of pollution requiring attention.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Monitoreo del Ambiente , Suelo , Contaminantes del Suelo/análisis , Medición de Riesgo , China , Metales Pesados/análisis , CadmioRESUMEN
Alfalfa (Medicago sativa L.) is a leguminous forage widely grown worldwide. Saline and alkaline stress can affect its development and yield. To elucidate the physiological mechanisms of alfalfa in response to saline and alkaline stress, we investigated the growth and physiological and metabolomic changes in alfalfa under saline (100 mM NaCl) and alkaline (100 mM Na2CO3, NaHCO3) stress. At the same Na+ concentration, alkaline stress caused more damage than that caused by saline stress. A total of 65 and 124 metabolites were identified in response to saline and alkaline stress, respectively. Determination of gene expression, enzyme activity, substance content, and KEGG enrichment analysis in key pathways revealed that alfalfa responded to saline stress primarily by osmoregulation and TCA cycle enhancement. Flavonoid synthesis, TCA cycle, glutamate anabolism, jasmonate synthesis, and cell wall component synthesis increased as responses to alkaline stress. This study provides important resources for breeding saline-alkaline-resistant alfalfa.
Asunto(s)
Medicago sativa , Fitomejoramiento , Medicago sativa/genética , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Sodio/metabolismo , Metabolómica , Estrés Fisiológico , Regulación de la Expresión Génica de las PlantasRESUMEN
The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.
RESUMEN
Prenatal diagnosis of congenital heart disease (CHD) relies primarily on fetal echocardiography conducted at mid-gestational age-the sensitivity of which varies among centers and practitioners. An objective method for early diagnosis is needed. Here, we conducted a case-control study recruiting 103 pregnant women with healthy offspring and 104 cases with CHD offspring, including VSD (42/104), ASD (20/104), and other CHD phenotypes. Plasma was collected during the first trimester and proteomic analysis was performed. Principal component analysis revealed considerable differences between the controls and the CHDs. Among the significantly altered proteins, 25 upregulated proteins in CHDs were enriched in amino acid metabolism, extracellular matrix receptor, and actin skeleton regulation, whereas 49 downregulated proteins were enriched in carbohydrate metabolism, cardiac muscle contraction, and cardiomyopathy. The machine learning model reached an area under the curve of 0.964 and was highly accurate in recognizing CHDs. This study provides a highly valuable proteomics resource to better recognize the cause of CHD and has developed a reliable objective method for the early recognition of CHD, facilitating early intervention and better prognosis.
Asunto(s)
Cardiopatías Congénitas , Proteoma , Embarazo , Humanos , Femenino , Estudios de Casos y Controles , Proteómica , Cardiopatías Congénitas/diagnóstico , Biomarcadores , Cisplatino , CiclofosfamidaRESUMEN
Background: As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods: Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results: A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion: Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.
RESUMEN
PURPOSE: To show that the acoustic noise of spiral MRI can be reduced by derating the gradients with minimal penalty to image quality and scan time, and to illustrate an algorithm for optimal choice of derating parameters. THEORY AND METHODS: Acoustic noise level was measured and compared for various values of maximum gradient amplitude and slew rate for T1 -weighted spin-echo spiral scans while maintaining image contrast, FOV and resolution, and readout time. A full gradient trajectory and a derated gradient (undersampled) trajectory were chosen for a volunteer scan followed by parallel imaging-aided reconstruction to illustrate comparable image SNR. Two auto-derating methods, which prioritize slew rate and gradient amplitude, respectively, were derived using analytical results from the WHIRLED PEAS variant of spiral waveforms and compared in their acoustic noise level under test use cases. RESULTS: Derating the gradients made the scan quieter by 16.6 dB(A) on average than a full gradient trajectory and required an undersampling factor R = 2 in order to maintain scan time, with no appreciable penalty in image SNR. Prioritizing reduced slew rate resulted in maximal loudness reduction. CONCLUSION: Scanner gradients can often be derated to reduce the acoustic noise for spiral MRI with minimal penalty in scan time and image quality with the help of parallel imaging. An automatic slew-priority derating method that maximizes loudness reduction is given.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Algoritmos , AcústicaRESUMEN
Oxidative carbonylation of methane is an appealing approach to the synthesis of acetic acid but is limited by the demand for additional reagents. Here, we report a direct synthesis of CH3COOH solely from CH4 via photochemical conversion without additional reagents. This is made possible through the construction of the PdO/Pd-WO3 heterointerface nanocomposite containing active sites for CH4 activation and C-C coupling. In situ characterizations reveal that CH4 is dissociated into methyl groups on Pd sites while oxygen from PdO is the responsible for carbonyl formation. The cascade reaction between the methyl and carbonyl groups generates an acetyl precursor which is subsequently converted to CH3COOH. Remarkably, a production rate of 1.5 mmol gPd-1 h-1 and selectivity of 91.6% toward CH3COOH is achieved in a photochemical flow reactor. This work provides insights into intermediate control via material design, and opens an avenue to conversion of CH4 to oxygenates.
RESUMEN
The growing demand for efficient healthcare delivery has intensified the need for technological innovations that facilitate medical professionals' decision-making processes. In this study, we investigate ChatGPT (OpenAI Incorporated, Mission District, San Francisco, United States), a state-of-the-art language model based on the GPT-4 architecture, as an effective tool for assisting healthcare professionals in writing medical reports based on real patient laboratory results. By leveraging ChatGPT's extraordinary performance across multiple medical domains, including lab result diagnostics and medical literature analysis, we aimed to streamline and enhance the medical report generation process. The generated case report presents a 31-year-old male patient with no significant past medical history who visited a clinic to establish care and seek evaluation for abdominal pain. Following routine laboratory tests, including a complete blood count, comprehensive metabolic panel, and a Helicobacter pylori breath test, ChatGPT provided tailored recommendations addressing identified concerns and abnormalities. These included lifestyle modifications, such as dietary changes, weight management, and avoiding trigger foods or behaviors; alongside medical treatment options, the patient was advised to consult a gastroenterologist for further evaluation and potential advanced treatment options. The organization and structure of this case study are derived from ChatGPT's output, using patient's actual physical information and lab results as input, without any prior knowledge. Ultimately, we will compare the generated report with suggestions from an online doctor consultation system to demonstrate the precision and reliability of ChatGPT's recommendations. Through this comparison, we aim to show that ChatGPT can produce coherent, comprehensive, and clinically relevant medical reports with a relatively high degree of accuracy and consistency.
RESUMEN
OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groupsï¼ with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structureï¼ the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.
Asunto(s)
Aloinjertos , Electroacupuntura , Ganglios Espinales , Traumatismos de los Nervios Periféricos , Nervio Ciático , Animales , Masculino , Ratas , Aloinjertos/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Nervio Ciático/lesionesRESUMEN
Studies have shown ketogenic diets (KD) started from early middle-age improved health span and longevity in mice. KDs started later in life or administered intermittently may be more feasible and promote compliance. Therefore, this study sought to test if continuous or intermittent KDs started in late-middle-aged mice would improve cognition and motor function at advanced age. Eighteen-month-old male C57BL/6JN mice were assigned to an isocaloric control (CD), KD, or intermittent ketogenic (IKD, 3-day KD/week) diet. A panel of behavior tests were performed to assess cognitive and motor functions with aging. Y-maze alternation rate was higher for both IKD and KD mice at 23 months of age and for KD mice at 26 months indicating an improved spatial working memory. Twenty-six-month-old KD mice also showed better spatial learning memory in Barnes maze when compared to the CD. Improved grid wire hang performance was observed in aged IKD and KD versus CD mice indicating better muscle endurance under isometric contraction. A reduced level of circulating proinflammatory cytokines in aged KD (IL-6 and TNF-α) and IKD (IL-6) mice may contribute to the phenotypic improvements observed with these interventions. This study demonstrates that when initiated at late-middle age, the KD improved measures of spatial memory and grid wire hang performance in aged male mice, with IKD showing results intermediate to the CD and KD groups.
Asunto(s)
Dieta Cetogénica , Ratones , Masculino , Animales , Dieta Cetogénica/métodos , Memoria Espacial , Interleucina-6 , Ratones Endogámicos C57BL , DietaRESUMEN
Dysregulated maternal fatty acid metabolism increases the risk of congenital heart disease (CHD) in offspring with an unknown mechanism, and the effect of folic acid fortification in preventing CHD is controversial. Using gas chromatography coupled to either a flame ionization detector or mass spectrometer (GC-FID/MS) analysis, we find that the palmitic acid (PA) concentration increases significantly in serum samples of pregnant women bearing children with CHD. Feeding pregnant mice with PA increased CHD risk in offspring and cannot be rescued by folic acid supplementation. We further find that PA promotes methionyl-tRNA synthetase (MARS) expression and protein lysine homocysteinylation (K-Hcy) of GATA4 and results in GATA4 inhibition and abnormal heart development. Targeting K-Hcy modification by either genetic ablation of Mars or using N-acetyl-L-cysteine (NAC) decreases CHD onset in high-PA-diet-fed mice. In summary, our work links maternal malnutrition and MARS/K-Hcy with the onset of CHD and provides a potential strategy in preventing CHD by targeting K-Hcy other than folic acid supplementation.
Asunto(s)
Cardiopatías Congénitas , Infarto del Miocardio , Animales , Femenino , Humanos , Ratones , Embarazo , Ácido Fólico/farmacología , Cardiopatías Congénitas/genética , Ácido Palmítico , Transducción de SeñalRESUMEN
Nonadiabatic chemical reactions involving continuous circularly polarized light (cw CPL) have not attracted as much attention as dynamics in unpolarized/linearly polarized light. However, including circularly (in contrast to linearly) polarized light allows one to effectively introduce a complex-valued time-dependent Hamiltonian, which offers a new path for control or exploration through the introduction of Berry forces. Here, we investigate several inexpensive semiclassical approaches for modeling such nonadiabatic dynamics in the presence of a time-dependent complex-valued Hamiltonian, beginning with a straightforward instantaneous adiabatic fewest-switches surface hopping (IA-FSSH) approach (where the electronic states depend on position and time), continuing to a standard Floquet fewest switches surface hopping (F-FSSH) approach (where the electronic states depend on position and frequency), and ending with an exotic Floquet phase-space surface hopping (F-PSSH) approach (where the electronic states depend on position, frequency, and momentum). Using a set of model systems with time-dependent complex-valued Hamiltonians, we show that the Floquet phase-space adiabats are the optimal choice of basis as far as accounting for Berry phase effects and delivering accuracy. Thus, the F-PSSH algorithm sets the stage for future modeling of nonadiabatic dynamics under strong externally pumped circular polarization.