RESUMEN
Sustained visual attention allows us to process and react to unpredictable, behaviorally relevant sensory input. Sustained attention engages communication between the higher-order visual thalamus and its connected cortical regions. However, it remains unclear whether there is a causal relationship between oscillatory circuit dynamics and attentional behavior in these thalamo-cortical circuits. By using rhythmic optogenetic stimulation in the ferret, we provide causal evidence that higher-order visual thalamus coordinates thalamo-cortical and cortico-cortical functional connectivity during sustained attention via spike-field phase locking. Increasing theta but not alpha power in the thalamus improved accuracy and reduced omission rates in a sustained attention task. Further, the enhancement of effective connectivity by stimulation was correlated with improved behavioral performance. Our work demonstrates a potential circuit-level causal mechanism for how the higher-order visual thalamus modulates cortical communication through rhythmic synchronization during sustained attention.