Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 148: 112675, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35183993

RESUMEN

Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after Allogeneic Hematopoietic Stem Cell Transplant (allo-HSCT). Although a series of immunosuppressant agents are routinely used as the first-line prevention, the morbidity and mortality rate remains high in allo-HSCT recipients. Our previous work indicated that combining Xuebijing (XBJ) with Cyclosporin A (CSA) is superior to CSA alone in preventing aGVHD. However, it was not clear which compounds in XBJ may prevent aGVHD. Whether the effective compounds in XBJ can be safely combined with CSA to prevent GVHD remain to be evaluated. Here, we accessed whether the combination of four main components in XBJ (C0127) had the same efficacy as XBJ in preventing aGVHD. In addition, the effectiveness of a novel combination therapy (C0127 + CSA) on aGVHD prophylaxis was evaluated using 16 s rRNA sequencing and RNA sequencing approaches in vitro and in vivo. In aGVHD mice, C0127 enhanced the preventive effects of CSA including decreasing mortality, maintaining weight, reducing GVHD score and reducing the expression of IL-6 and TNF-α in serum. Fatal GVHD is a frequent consequence of intestinal tract damage. We found combining C0127 with CSA alleviated the gut damage and maintained the normal physiological function of intestine by H&E staining, intestinal permeability and short chain fatty acid (SCFA) assays. Next, 16 S sequencing analysis of feces showed the combination treatment maintained the intestinal microbial diversity, normalized the intestinal microorganism and prevented flora disorder by reducing the relative abundances of Escherichia coli and Enterococcus. Further, RNA-seq analysis of colonic epithelium revealed C0127 combined with CSA chiefly regulated chemokines and cytokines in IL-17 signaling pathway. The combination treatment reduced the expression of G-CSF and its effector STAT3 (an axis that aggravated gut inflammation and flora disorder) in gut epithelium on mRNA and protein level. These findings indicated that C0127 improved the prevention of CSA in aGVHD mice partially by protecting the gut from damage through normalizing G-CSF signaling, which regulates the intestinal microbiota and the integrity of the epithelial barrier.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Aguda , Animales , Ciclosporina/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Ratones
2.
Sci Rep ; 10(1): 6105, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269242

RESUMEN

Myocardial remodeling represents a key factor in chronic heart failure (CHF) development, and is characterized by chronic death of cardiomyocytes. Cardiac function changes may be attributed to inflammation, apoptosis and autophagy. This study assessed the effects of Qi Dan Li Xin Pill (QD) on heart function, inflammatory factors, autophagy and apoptosis in cardiac remodeling in CHF rats upon myocardial infarction (MI) induction. Male SD rats underwent a sham procedure or left anterior descending coronary artery (LADCA) ligation, causing MI. Twenty-eight days after modeling, the animals were treated daily with QD, valsartan and saline for 4 weeks. Echocardiography after 4 weeks of drug intervention revealed substantially improved left ventricular remodeling and cardiac function following QD treatment. As demonstrated by decreased IL-1ß, IL-6 and TNF-α amounts, this treatment also inhibited the apoptotic process and protected the viability of the myocardium. These outcomes may be attributed to enhanced autophagy in cardiomyocytes, which further reduced pro-inflammatory and pro apoptotic effects. This process may be achieved by QD regulation of the mTOR/P70S6K signaling pathway, suggesting that the traditional Chinese medicine Qi Dan Li Xin pill is effective in heart protective treatment, and is worth further investigation.


Asunto(s)
Apoptosis , Autofagia , Cardiotónicos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Animales , Cardiotónicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
Front Physiol ; 11: 608279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643058

RESUMEN

Acute gut graft-versus-host disease (aGVHD) is a leading threat to the survival of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Abnormal gut microbiota is correlated with poor prognosis in allo-HSCT recipients. A disrupted intestinal microenvironment exacerbates dysbiosis in GVHD patients. We hypothesized that maintaining the integrity of the intestinal barrier may protect gut microbiota and attenuate aGVHD. This hypothesis was tested in a murine aGVHD model and an in vitro intestinal epithelial culture. Millipore cytokine array was utilized to determine the expression of proinflammatory cytokines in the serum. The 16S rRNA sequencing was used to determine the abundance and diversity of gut microbiota. Combining Xuebijing injection (XBJ) with a reduced dose of cyclosporine A (CsA) is superior to CsA alone in improving the survival of aGVHD mice and delayed aGVHD progression. This regimen also reduced interleukin 6 (IL-6) and IL-12 levels in the peripheral blood. 16S rRNA analysis revealed the combination treatment protected gut microbiota in aGVHD mice by reversing the dysbiosis at the phylum, genus, and species level. It inhibited enterococcal expansion, a hallmark of GVHD progression. It inhibited enterococcal expansion, a hallmark of GVHD progression. Furthermore, Escherichia coli expansion was inhibited by this regimen. Pathology analysis revealed that the combination treatment improved the integrity of the intestinal tissue of aGVHD mice. It also reduced the intestinal permeability in aGVHD mice. Besides, XBJ ameliorated doxorubicin-induced intestinal epithelial death in CCK-8 assay. Overall, combining XBJ with CsA protected the intestinal microenvironment to prevent aGVHD. Our findings suggested that protecting the intestinal microenvironment could be a novel strategy to manage aGVHD. Combining XBJ with CsA may reduce the side effects of current aGVHD prevention regimens and improve the quality of life of allo-HSCT recipients.

4.
Front Pharmacol ; 9: 1440, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618740

RESUMEN

Lapses in the graft-vs.-host disease (GVHD) prophylaxis and side effects of current standard care following allogeneic hematopoietic stem cell transplantation (allo-HSCT) call for novel regimens. Traditional approaches targeting T cells showed limited success in preventing acute GVHD (aGVHD). System medicine showed promising results treating complex diseases such as sepsis and multi-organ dysfunction syndrome (MODS). Adapting established network pharmacology analysis methods, we aimed to develop novel integrative regimens to prevent aGVHD. Our network pharmacology analysis predicted that Xuebijing injection (XBJ) targets a series of key node proteins in aGVHD network. It also unveiled that Salviae miltiorrhizae (Danshen), an herb in Xuebijing formula, which prevented aGVHD in rats, shares five out of six key GVHD node proteins targeted by XBJ. Interestingly, network pharmacology analysis indicated Xuebijing may share multiple aGVHD targets with Cyclosporin A (CsA), a first-line drug for preventing aGVHD in the clinic. Based on current information, we hypothesized that combination of XBJ and CsA may yield superior results in aGVHD prevention than either drug alone. We performed in vitro and in vivo assays to validate the predictions by the network pharmacology analysis. In vitro assays revealed XBJ prevented platelet aggregation and NF-κB nuclear translocation in macrophages. XBJ also promoted angiogenesis in tube-formation assay. Importantly, the combination of CsA and XBJ was effective in rescuing mice subjected to lethal GVHD. XBJ contributed to the rescue through preventing NF-κB nuclear translocation, attenuating inflammation and maintaining viability of macrophages. Overall, network pharmacology is a powerful tool to develop novel integrative regimens. Combination of XBJ and CsA may shed light on preventing aGVHD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...