Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 187: 114373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763649

RESUMEN

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Asunto(s)
Digestión , Ácidos Grasos , Ácidos Láuricos , Manihot , Almidón , Difracción de Rayos X , Manihot/química , Almidón/química , Ácidos Láuricos/química , Ácidos Grasos/química , Ácidos Decanoicos/química , Reología , Caprilatos/química , Espectroscopía de Resonancia Magnética
2.
Int J Biol Macromol ; 267(Pt 2): 131172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552701

RESUMEN

In this study, the impact of acetylation on physicochemical, digestive behavior and fermentation characteristics of Cyperus esculentus polysaccharides (CEP) was investigated. Results indicated that the acetylation led the molecules to be more likely aggregated, followed by a higher crystallinity, a lower apparent viscosity and a higher ratio of G" to G' (tan δ). Importantly, the acetylated polysaccharides (ACEP) had a lower digestibility, but its molecular weight was lower than that of original polysaccharides (CEP) following a simulated saliva-gastrointestinal digestion. Gut microbiota fermentation indicated that both polysaccharides generated outstanding short-chain fatty acids (SCFAs), in which the acetylated polysaccharides had a faster fermentation kinetics than the original one, followed by a quicker reduction of pH and a more accumulation of SCFAs, particularly butyrate. Fermentation of both polysaccharides promoted Akkermansia, followed by a reduced richness of Klebsiella. Importantly, the current study revealed that the fermentation of acetylated polysaccharides enriched Parabacteroides, while fermentation of original ones promoted Bifidobacterium, for indicating their individual fermentation characteristics and gut environmental benefits.


Asunto(s)
Cyperus , Ácidos Grasos Volátiles , Fermentación , Microbioma Gastrointestinal , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/metabolismo , Acetilación , Cyperus/química , Ácidos Grasos Volátiles/metabolismo , Fenómenos Químicos , Animales , Viscosidad , Concentración de Iones de Hidrógeno
3.
Sci Rep ; 14(1): 1127, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212436

RESUMEN

The urban street is a congested environment that contains a large number of occluded and size-differentiated objects. Aiming at the problems of the loss of the target to be detected and low detection accuracy resulting from this situation, a newly improved algorithm, based on YOLOv4, DCYOLO is proposed. Firstly, a Difference sensitive network (DSN) is introduced to extract the edge features of objects from the original image. Then, assign the edge features back to increase the edge intensity of the object in the original image and ultimately improve the detection performance. Secondly, the feature fusion module (CFFB) based on context information is introduced to realize the cross-scale fusion of shallow fine-grained features and deep-level features, to strengthen the cross-scale semantic information fusion of feature maps and eventually improve the performance of object detection. At last, in the network prediction part, the SIOU loss function replaces the original CIOU loss function to improve the convergence speed and accuracy of object detection. The experiments based on MS COCO 2017 and self-made datasets show that, compared with the YOLOv4, the detection accuracy of DCYOLO models is greatly improved with an increase of 9.1 percentage points in AP and 10.4 percentage points in APs. Compared with YOLOv5x and Faster R-CNN, DCYOLO shows higher accuracy and better detection performance. The experiment result proves that the DCYOLO algorithm can adapt to the dense object detection requirements in the congested environment of urban streets.

4.
Int J Biol Macromol ; 261(Pt 2): 129706, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272422

RESUMEN

A new generation of food packaging films is gradually replacing traditional plastic packaging films because of their biodegradability, safety, and some functional properties such as anti-bacterial and oxidant resistance. In the present work, an antibacterial packing film based on amylose starch and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) was prepared for meat preservation. The interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA) was determined experimentally and through molecular dynamics (MD) simulation. The macromolecular chains of amylose starch and HTCC became entangled via inter-molecular H-bonds and then cross-linked with GA via the Schiff base reaction. The interaction of amylose starch and HTCC improved the mechanical properties of the amylose films. Compared with the amylose films, the tensile strength and elongation at break of the optimal HTCC/amylose films reached to 16.13 MPa (an increase of 206.65 %) and 53.86 % (an increase of 109.49 %). The HTCC/amylose films were found to provide obvious bacteriostatic performance, a relatively low cytotoxicity, the lower transmittance in the UV region, and thus the ability to enhance the preservation of fresh meat. These excellent characteristics therefore suggest that HTCC/amylose films might be promising candidates for application in antibacterial food packaging films.


Asunto(s)
Amilosa , Quitosano , Amilosa/química , Almidón/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de Alimentos , Compuestos de Amonio Cuaternario , Carne
5.
Food Chem ; 442: 138465, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266414

RESUMEN

Bioactive peptide's development is facing two challenges in terms of its lower yield and limited understanding of structurally orientated functionality. Therefore, peptides were prepared from wheat bran via a cocktail enzyme for achieving a higher level of hydrophobic amino acids than traditional method. The obtained peptides exhibited great antioxidant activities against H2O2-induced oxidative stress in HepG2 cells. Among them, 91 bioactive peptides were selected through the virtual screening, and their N-terminal and C-terminal contained many hydrophobic amino acids. Then the peptides with capacity to interact with Keap1 were identified by in silico simulation, because Keap1 acts as a sensor of redox insults. The results revealed that peptides DLDW and DLGL demonstrated the highest binding affinities, and a bridge was formed between Asp of DLGL and Arg415 of Klech domain, contributing to interfering Keap1-Nrf2 interaction. These findings implied a potential application of wheat bran peptides as nutraceuticals and health-promoting ingredients.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peróxido de Hidrógeno/metabolismo , Fibras de la Dieta , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/química , Aminoácidos
6.
Int J Biol Macromol ; 255: 128100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981285

RESUMEN

The current study applied dual-enzymatic treatment via alcalase and Bacillus velezensis hydrolase for enhancing extraction of proteins and polysaccharides from wheat bran and modifying their corresponding structure. Results indicated the aqueous extract by enzymatic pretreatment (referred as EHWB) had an increased content of soluble substance, in which 18.5 % increased for carbohydrates and 11.4 % increased for proteins in the extract compared to the aqueous extract without enzymes (labeled as AEWB). Furthermore, compositions with lower molecular weight of 130 kDa and < 21.1 kDa for polysaccharides and proteins, respectively, were found in EHWB. Interestingly, EHWB had a twice higher radicals scavenging than that of AEWB, and digestive property indicated EHWB had a greater peptides production although glucose release was lower in gastric phase. Importantly, this is the first study to reveal that gut microbiota fermentation of EHWB resulted in faster generation of short-chain fatty acids at initial fermentation stage (6 h), followed a higher generation of butyrate at final fermentation stage (24 h). This fermentation property might be associated with its presence of lower molecular weight substrates and even the changes in the molecular structure induced by the enzymes. This study highlights a novel approach for developing a value-added product from wheat bran.


Asunto(s)
Fibras de la Dieta , Polisacáridos , Fibras de la Dieta/metabolismo , Carbohidratos/química , Ácidos Grasos Volátiles/metabolismo , Fermentación
7.
Foods ; 12(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959121

RESUMEN

Three mannan polysaccharides and their oligosaccharides were investigated in terms of physicochemical characteristics and effects on gut microbiota. Oligosaccharides from guar gum had the fastest fermentation kinetics for SCFAs generation at the initial stage, while the locust bean of both polymers and oligosaccharides demonstrated the lowest SCFAs through the whole fermentation process. In contrast, konjac gum steadily increased SCFAs and reached its maximum level at 24 h fermentation, indicating its fermentation character may be associated with its rheological properties. Compared to their corresponding polysaccharides, all the oligosaccharides demonstrated a faster fermentation kinetics, followed by an enriched abundance of propionate-producing bacterial Prevotella and a decreased abundance of Megamonas and Collinsella. Meanwhile, oligosaccharides reduced the Firmicutes/Bacteroidota ratio as well as the abundance of Bacteroidetes and Escherichia-Shigella. The fermentation of konjac substrate significantly promoted the abundance of butyrate-producing bacterial Faecalibacterium. In contrast, although the fermentation of locust bean and guar gum substrates benefited Bifidobacterium abundance due to their similar structure and monosaccharides composition, the fermentation of locust bean gum led to greater Bifidobacterium than the others, which may be associated with its higher mannose composition in the molecules. Interestingly, the partial hydrolysis of the three polysaccharides slightly reduced their prebiotic function.

8.
Food Res Int ; 174(Pt 1): 113497, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986413

RESUMEN

Wheat bran (WB) was fermented by Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus brevis (LAB-FWB), respectively, and their corresponding mechanism of obesity alleviation via gut microbiota and lipid metabolism was investigated. Results indicated LAB-FWB reduced body weight and serum glucose, followed by an improved lipid profile in obese mice compared with WB. All LAB-FWB interventions led to an enriched steroid hormone biosynthesis. LGG-WB significantly up-regulated genes in arachidonic acid metabolism, bile secretion and linoleic acid metabolism. While LB-WB down-regulated genes in PPAR signaling pathway and LP-WB up-regulated genes in linoleic acid metabolism, indicate their different regulation patterns. Furthermore, LAB-FWB reduced Firmicutes/Bacteroidetes ratio and returned HFD-dependent bacteria Colidextribacter and Erysipelatoclostridium to be normalized. Interestingly, LAB-FWB significantly enriched lipid-related pathways, benefiting xanthohumol, prostaglandin F2alpha, LPI 18:2 and lipoamide biosynthesis in lipid metabolic pathway, but not found in WB group. Among them, treatment with LGG-WB exerted the greatest function on alleviating obesity syndromes.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Ratones , Animales , Dieta Alta en Grasa , Metabolismo de los Lípidos , Fibras de la Dieta , Ácido Linoleico , Obesidad/metabolismo , Probióticos/farmacología
9.
Food Funct ; 14(18): 8615-8630, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37668611

RESUMEN

An animal model of Cd-induced kidney damage was designed to investigate the nephroprotective potential of the probiotic-fermented Ganoderma lucidum (FGL) via metabonomic analysis. The results showed that FGL enhanced sugar and amino acid metabolism. The interaction of Ganoderma lucidum (GL) and probiotics efficiently elevated short-chain fatty acid production following gut microbiota fermentation. The current data revealed that the FGL intervention alleviated Cd-induced nephrotoxicity via elevating the activity of antioxidant enzymes and decreasing the levels of pro-inflammatory and apoptotic factors. Based on transcriptome analysis, FGL intervention mediated renal dysfunction via decreasing the expressions of Nos2, Tnfsf14, S100a9, Map3k6 and Hk3, which were involved in oxidative stress, inflammatory response and the apoptosis process. The current study highlights a new approach for achieving positive nephroprotection via natural product intervention.


Asunto(s)
Cadmio , Reishi , Animales , Metabolómica , Estrés Oxidativo , Fermentación
10.
Food Funct ; 14(16): 7413-7425, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37475602

RESUMEN

In this study, the effect of mixed-strain fermentation using Kluyveromyces marxianus with either Lactobacillus plantarum or Pediococcus pentosaceus on the physiochemical and nutritional properties of white kidney bean flour sourdough was investigated. The results indicated that mixed-strain fermentation reduced the anti-nutritional factors produced from the white kidney bean flour, especially in the sourdough fermented by L. plantarum and K. marxianus (WKS-LK) compared to that by P. pentosaceus and K. marxianus (WKS-JK). Meanwhile, the content of lactic acid and acetic acid and the proportion of peptides with molecular weights ranging from <500 to 5000 Da were increased in the sourdoughs (WKS-LK > WKS-JK). Compared to the control (WK), microstructural characteristics of the dough seemed to be improved in WKS-LK followed by WKS-JK in terms of their corresponding gluten network consistency. Moreover, mixed fermentation led to a reduced starch digestibility accompanied by a higher content of resistant starch and slowly digestible starch. In contrast, protein digestibility was enhanced in WKS-LK and WKS-JK sourdough breads. More importantly, the changes in gut microbiota composition, short-chain fatty acid (SCFA) production, systemic inflammation, glucose tolerance and liver tissue histopathology following 21-day consumption of the sourdough bread were also evaluated via an animal model. The intake of sourdough breads reduced the abundance of the pathogenic microbiota Escherichia shigella. In contrast, the corresponding abundance of Rikenellaceae, Akkermansiaceae, Erysipelotrichaceae, Prevotellaceae and Eubacterium coprostanoligenes was increased, followed by enhanced SCFA generation, with the highest in WKS-LK and then WKS-JK. Meanwhile, a reduced level of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α in the serum and improved glucose tolerance and liver tissue histopathology following the bread consumption were also achieved in the order of WKS-LK, then WKS-JK mice compared to WK.


Asunto(s)
Microbioma Gastrointestinal , Phaseolus , Animales , Ratones , Fermentación , Pan/análisis , Almidón , Glucosa , Harina/análisis
11.
Food Chem ; 427: 136734, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37418805

RESUMEN

This research was designed to characterize the structure of Cyperus esculentus polysaccharide (CEP) and its acetylated one (ACEP), and then investigated the effects of acetylation on the changes in physicochemical properties, thermal stability, antioxidant and immunomodulatory activities. Results showed that CEP and ACEP were heteropolysaccharides consisting of glucose, mannose, arabinose and xylose. The main chain of CEP included α-1,4-Glcp residues with the branching points at the O-6 position of the α-1,6-Manp residues. Acetyl groups were substituted at the O-2 and O-6 positions of some glucose residues. Meanwhile, the acetylation remarkably improved the polysaccharides thermal stability, and the ACEP exhibited a greater antioxidant activity. Furthermore, CEP and ACEP were proved to protect RAW 264.7 cells against LPS-induced inflammation by improving cellular morphology and decreasing reactive oxygen species secretion. This study may highlight a new approach for developing a high value-added ingredient from C. esculentus for functional food industry.


Asunto(s)
Antioxidantes , Cyperus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Cyperus/química , Polisacáridos/farmacología , Polisacáridos/química , Células RAW 264.7 , Glucosa
12.
J Sci Food Agric ; 103(12): 5839-5848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127920

RESUMEN

BACKGROUND: Ageing and associated cognitive impairments are becoming serious issues around the world. In this study, the physiological properties of three kinds of complexes of fatty acid (capric, stearic and oleic acid, respectively) and de-branched starch molecules were investigated via a d-galactose-induced ageing model. This study revealed differences in the regulation of cognitive impairment and brain damage following intervention of different complexes, which might highlight a potent approach for the prevention of this chronic disease. RESULTS: Data indicated that three complexes improved response time and cognitive function and the bio-parameter markers associated with oxidative stress in ageing rats. Among them, the complexes prepared from de-branched starch-oleic acid showed a greater improvement compared to others. In addition, de-branched starch-capric acid complex showed a higher improvement in the morphology of colon cells and hippocampal neuronal cells. The consumption of de-branched starch-capric acid and -oleic acid complexes generated more short-chain fatty acids in the gut. More importantly, the complexation of de-branched starch with either caprate or stearate enhanced gut Akkermansia. Therefore, it was proposed that the richness in Akkermansia and gut metabolites might be associated with reduced damage of the hippocampal neuronal cells induced by the ageing progress. Moreover, the AMPK (AMP-activated protein kinase) pathway was activated in liver in de-branched starch-capric acid complex diet. In summary, de-branched starch-capric acid complex exhibited a greater effect on the attenuation of ageing-induced cognitive impairment. CONCLUSION: This study might highlight a new approach for intervening in the cognitive impairment during the ageing progress via a food supply. © 2023 Society of Chemical Industry.


Asunto(s)
Disfunción Cognitiva , Almidón , Ratas , Animales , Almidón/química , Ácidos Grasos , Ácido Oléico/química , Ácidos Decanoicos , Envejecimiento , Disfunción Cognitiva/prevención & control
13.
J Agric Food Chem ; 71(22): 8448-8457, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37226079

RESUMEN

Considering that the study on the impact of the long-term consumption of resistant starch on metabolic syndromes induced by a high-fat diet (HFD) is rare, this investigation designed a 36-week consumption of HFD containing three RS levels (LRS, MRS, and HRS) for measuring changes in serum parameters, liver transcriptome, and gut microbiota. Results indicated that all levels of RS in HFD significantly reduced food intakes and body gain, followed by increased leptin and PYY, but did not show dose-dependence. Furthermore, MRS triggered a greater number of enriched pathways than the other RS groups, whereas no enriched pathway was noted in the HRS group. The Firmicutes/Bacteroidetes ratio can still predict changes in body weight for long-term observation, and isobutyrate was found to be positively related to Blautia. Importantly, a shifted ratio of Ruminococcaceae/Lactobacillaceae quickly occurred in the early stage of 12 weeks for all groups, but the ratio remained constant in HRS rather than in LRS and MRS, which might indicate both similarity and difference in the regulation of the metabolic syndromes among the three RS interventions.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Humanos , Animales , Ratones , Almidón Resistente , Dieta Alta en Grasa/efectos adversos , Homeostasis , Ratones Endogámicos C57BL , Almidón/metabolismo
14.
Foods ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36832936

RESUMEN

Cognitive impairment is associated with aging; however, the underlying mechanism remains unclear. Our previous study found that polyphenol-rich blueberry-mulberry extract (BME) had an antioxidant capability and effectively alleviated cognitive impairment in a mouse model of Alzheimer's disease. Thus, we hypothesized that BME would improve cognitive performance in naturally aging mice and assessed its effects on related signaling pathways. Eighteen-month-old C57BL/6J mice were gavaged with 300 mg/kg/d of BME for 6 weeks. Behavioral phenotypes, cytokine levels, tight junction protein levels, and the histopathology of the brain were assessed, and 16S ribosomal RNA sequencing and targeted metabolome analyses were used for gut microbiota and metabolite measurements. Our results showed that the cognitive performance of aged mice in the Morris water maze test was improved after BME treatment, neuronal loss was reduced, IL-6 and TNF-α levels in the brain and intestine were decreased, and the levels of intestinal tight junction proteins (ZO-1 and occludin) were increased. Further, 16S sequencing showed that BME significantly increased the relative abundance of Lactobacillus, Streptococcus, and Lactococcus and decreased the relative abundance of Blautia, Lachnoclostridium, and Roseburia in the gut. A targeted metabolomic analysis showed that BME significantly increased the levels of 21 metabolites, including α-linolenic acid, vanillic acid, and N-acetylserotonin. In conclusion, BME alters the gut microbiota and regulates gut metabolites in aged mice, which may contribute to the alleviation of cognitive impairment and to inflammation inhibition in both the brain and the gut. Our results provide a basis for future research on natural antioxidant intervention as a treatment strategy for aging-related cognitive impairment.

15.
Int J Biol Macromol ; 231: 123164, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621731

RESUMEN

The Pickering emulsion was prepared by short-chain fatty acids (SCFAs) esterified debranched starch. The microstructure, particle size distribution, rheological properties and stability of the emulsions showed that the introduction of acyl groups improved the ability of starch to stabilize the emulsions, in which the butyrylated starch with longer acyl side chains exhibited higher emulsifying ability compared to acetylated and propionylated starches. Pickering emulsions stabilized with butyrylated starch as stabilizer have better stability after 30 days of storage. The particle size distribution of SCFAs-esterified starch emulsions with enzymatic debranching pretreatment was more concentrated and the droplet size was further reduced, which improved the instability factors such as flocculation, agglomeration or Ostwald ripening of emulsions induced by conventional SCFAs-esterified emulsions and further improved the stability of SCFAs-esterified emulsions. More importantly, butyrylated starch (with or without debranched pretreatment) emulsions exhibited smaller and more uniform droplet shapes and higher curcumin encapsulation efficiency (EE%) in SCFAs-esterified starch emulsions, and the EE% of curcumin in debranched butyrylated starch emulsion increasing from 10.04 % in native starch emulsions to 50.70 %.


Asunto(s)
Curcumina , Almidón , Emulsiones/química , Almidón/química , Curcumina/química , Excipientes , Ácidos Grasos Volátiles , Tamaño de la Partícula
16.
Heliyon ; 8(12): e12127, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561695

RESUMEN

Aiming at the shock absorption and stability under complex terrain conditions, a six-wheeled food delivery robot with a suspension damping structure was designed. The food delivery robot is mainly composed of a take-out box, a chassis mobile structure and a suspension damping structure. The dynamic analysis of the suspension damping structure of the robot is carried out through the Lagrangian equation, and the offset of the wheels in different driving environments is obtained. Then, the zero-moment point method is used to analyze the stability of the food delivery robot in two non-horizontal movement environments of the left and right wheels and the front and rear wheels. Based on this, taking speed bumps and ramp terrain with different slopes as examples, the stability of the food delivery robot is analyzed by ADAMS simulation. The simulation and experiment results verify the rationality of the structure design of the food delivery robot with a suspension damping structure and the correctness of the theoretical analysis.

17.
Front Microbiol ; 13: 1036362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545203

RESUMEN

Introduction: Protists play an important role in nutrient cycling, microbiome stability and soil fertility maintenance. However, the driving force of protistan functional groups remains poorly understood in agricultural ecosystems. Methods: We investigated the impacts of fertilization regimes on the diversity, composition and functional groups of protists and further disentangled the effects of multiple factors shaping the community composition of functional groups in a 5-year fertilization regime (CK, no fertilization; M, organic fertilization; MNPK, combined inorganic and organic fertilization; NPK, inorganic fertilization). Results: Fertilization significantly changed the community composition of protists rather than diversity. The MNPK treatment significantly increased the relative abundance of phototrophs and decreased that of the parasites and consumers. Partial least squares path modeling indicated that fertilization indirectly regulated protistan consumers via changes in the P content, which affected the composition of consumers mainly by regulating fungal community composition. Soil moisture (SM) and available phosphorus (AP) were identified as the top predictors for the composition of parasites, and the composition of phototrophs was mainly affected by SM, indicating that parasites and phototrophs were more sensitive to abiotic factors in the fertilization system. Discussion: Taken together, our findings highlight that fertilization significantly affects the composition of functional groups of protists and their biotic or abiotic regulatory processes, which have implications for the potential changes in their ecosystem functions for soil management systems.

18.
Foods ; 11(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36360031

RESUMEN

This study aimed to investigate the effect of the incorporation of 0-25% pitaya (Hylocereus undatus) fermented by Pediococcus pentosaceus on physicochemical and bioactive properties of yeast-leavened wheat-mung bean bread. The results revealed that ß-glucosidase activity increased during dough proofing, which may contribute to changes in dietary fiber. Compared to wheat bread, experimental bread had an increased content of soluble dietary fiber (SDF), total phenolic, total flavonoid, and slowly digestible starch, especially in wheat-mung bean bread prepared with 15% pitaya fermentates (WMB-15F). The effect of bread consumption on systemic inflammation, glucose tolerance, and blood lipid profiles was also evaluated via a mice model. The results indicated that levels of pro-inflammatory cytokines declined and glucose tolerance improved, while LDL and HDL were positively modified compared to control. Furthermore, an increased abundance of Lactobacillus, Lachnospiraceae, and Bifidobacterium spp. was observed in WMB-15F mice. Acetic acid was the dominant short-chain fatty acids (SCFAs) in feces and serum in all groups. Total SCFAs in circulation were highest in WMB-15F mice compared to other groups. In summary, an increased abundance of beneficial gut microbiota and promoted SCFA production might be highly associated with increased SDF and the release of key phenolic compounds during dough proofing, which exerts health benefits aroused from the consumption of yeast-leavened bread.

19.
Food Funct ; 13(20): 10759-10768, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36190142

RESUMEN

The influence of phenolic compound extracts from three colored rice cultivars on the gut microbiota was investigated. The results revealed that protocatechuic acid, chlorogenic acid, caffeic acid and p-coumaric acid were the major metabolites after gut microbiota fermentation. The presence of phenolic compounds led to a significantly decreased ratio of Firmicutes and Bacteroidetes, while the abundance of Proteobacteria decreased. At the genus level, phenolic compounds promoted an increase of Prevotella, Megamonas and Bifidobacterium, while the abundance of Bacteroides and Escherichia-Shigella was inhibited. The concentration of ferulic acid and syringic acid was positively correlated with Bifidobacterium, while Megamonas was positively correlated with catechin and caffeic acid. The abundance of Escherichia-Shigella and Citrobacter was found to be significantly negatively correlated with chlorogenic acid. More importantly, this study revealed that the presence of phenolic compounds generated more propionate, followed by acetate, but not butyrate after gut microbiota fermentation.


Asunto(s)
Catequina , Microbioma Gastrointestinal , Oryza , Bifidobacterium/metabolismo , Ácidos Cafeicos , Ácido Clorogénico , Fermentación , Oryza/química , Fenoles/química , Propionatos/metabolismo
20.
Food Chem ; 394: 133478, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35716500

RESUMEN

The in vitro digestion of a mixed gel (MS) of pork muscle and resistant starch (RS) was investigated and the role of the salt-soluble protein (SSP) in the function promotion of the mixed gel was clarified. The results showed that the mixed muscle gel (MS) and the addition of RS to muscle gel (M + S) presented an improved protein digestion, as indicated by a reduced particle size of the hydrolysates, more degradation of proteins with large molecular weight and more generation of free amino acids compared with the RS-free muscle gel (M). Meanwhile, the hydrolysates of the M + S and MS showed intensified DPPH radical scavenging activities. Specifically, the MS exerted preferable properties in protein digestion and antioxidant activity. Similar digestion characteristics were noticed in mixed SSP gels.The current study revealed that the reinforced functionality of the mixed muscle gel was associated with the binding relationships between SSP and RS during cooking.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Digestión , Geles , Músculos/metabolismo , Almidón Resistente , Almidón/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA