Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900368

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) and proteoglycan receptor protein tyrosine phosphatase σ (PTPσ) play a critical role in the pathology of spinal cord injury (SCI). CSPGs can be induced by autophagy inhibition in astrocyte. However, CSPG's impact on autophagy and its role in SCI is still unknown. We investigate intracellular sigma peptide (ISP) targeting PTPσ, its effects on autophagy, and synaptic reorganization in SCI. We found that ISP increased the level of autophagosome marker LC3B-II/I and decreased autophagosome degradation marker p62 in SCI, suggesting activated autophagy flux. ISP restored autophagosome-lysosome fusion-related protein syntaxin 17 (STX17) and lysosome-associated membrane protein 2 (LAMP2), indicating activated autophagosome-lysosome fusion. ISP increased pre-synaptic marker synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) expression and improved excitatory synapse marker vesicular glutamate transporter 1 (VGLUT1) and SYN in SCI, suggesting improved synaptic reorganization. ISP promoted axon marker neurofilament and growth-related GAP-43 expression in SCI. ISP rescued a preserved number of motor neurons and improved neurobehavioral recovery after SCI. Our study extended the CSPG-PTPσ inhibition role in activating autophagy flux, axon and synaptic reorganization, and functional recovery in SCI.

2.
Heliyon ; 10(2): e24526, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298731

RESUMEN

Background: Considering its high prevalence, estimating the risk of arthritis in middle-aged and older Chinese adults is of particular interest. This study was conducted to develop a risk prediction model for arthritis in community-dwelling middle-aged and older adults in China. Methods: Our study included a total of 9599 participants utilising data from the China Health and Retirement Longitudinal Study (CHARLS). Participants were randomly assigned to training and validation groups at a 7:3 ratio. Univariate and multivariate binary logistic regression analyses were used to identify the potential predictors of arthritis. Based on the results of the multivariate binary logistic regression, a nomogram was constructed, and its predictive performance was evaluated using the receiver operating characteristic (ROC) curve. The accuracy and discrimination ability were assessed using calibration curve analysis, while decision curve analysis (DCA) was performed to evaluate the net clinical benefit rate. Results: A total of 9599 participants were included in the study, of which 6716 and 2883 were assigned to the training and validation groups, respectively. A nomogram was constructed to include age, hypertension, heart diseases, gender, sleep time, body mass index (BMI), residence address, the parts of joint pain, and trouble with body pains. The results of the ROC curve suggested that the prediction model had a moderate discrimination ability (AUC >0.7). The calibration curve of the prediction model demonstrated a good predictive accuracy. The DCA curves revealed a favourable net benefit for the prediction model. Conclusions: The predictive model demonstrated good discrimination, calibration, and clinical validity, and can help community physicians and clinicians to preliminarily assess the risk of arthritis in middle-aged and older community-dwelling adults.

3.
Neurochem Res ; 48(2): 435-446, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36152137

RESUMEN

Spinal cord injuries (SCI) are complex and cause complex neurological disorders with serious implications for the health of society. Excessive neuroinflammation is one of the pathogenesis of trauma-related central nervous system (CNS) dysfunction. The initiation of inflammatory response mainly stems from neuronal necrosis in the central nervous system. The therapeutic effects and underlying mechanisms of zinc targeting neurons were investigated in vivo and in vitro using protein chips, western blotting, reactive oxygen species (ROS) activity assays, ELISA, RT-qPCR, and immunostaining. In this study, we found that zinc promotes functional recovery. Specifically, we found that zinc increased neuronal survival and suppressed lesion size and focal apoptosis levels in vivo. Zinc administration confers neuroprotection by inhibiting NLRP3 inflammasome-associated cytokine levels probed with a protein chip. Furthermore, we found that zinc promoted SIRT3-mediated induction of autophagy, which abrogated inflammatory responses and mitochondrial ROS production in the injured spinal cord and cultured neurons. These findings suggest that zinc improves neuroinflammation and improves dyskinesia after SCI. In conclusion, zinc may be a potential therapeutic immunomodulatory challenge for the treatment of trauma-related CNS dysfunction.


Asunto(s)
Sirtuina 3 , Traumatismos de la Médula Espinal , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sirtuina 3/metabolismo , Zinc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Autofagia
4.
Environ Toxicol ; 38(1): 146-158, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36181686

RESUMEN

BACKGROUND: B lymphocyte-induced maturation protein 1 (Blimp1) is a risk allele for rheumatoid arthritis (RA), but its functional mechanism in RA remains to be further explored. METHODS: Flow cytometry was performed to detect CD4+ T cell differentiation. ELISA was used to measure inflammatory factor secretion. Lentivirus mediated Blimp1 overexpression vector (LV-Blimp1) or short hairpin RNA (sh-Blimp1) were used to infect CD4+ T cells stimulated by anti-CD28 and anti-CD3 mAbs. RA fibroblast-like synoviocytes (FLSs) were co-cultured with CD4+ T cells or T cell conditioned medium (CD4CM), and cell proliferation, invasion, and expression of adhesion molecules and cytokines in FLSs were evaluated. Mice were injected intradermally with type II collagen to establish a collagen-induced arthritis (CIA) mouse model, and the severity of CIA was evaluated with H&E and Safranin-O staining. RESULTS: Blimp1 knockdown increased pro-inflammatory factor secretion, but downregulated IL-10 concentration in activated CD4+ T cells. Blimp1 overexpression promoted regulatory T cells (Treg) CD4+ T cell differentiation and hindered T helper 1 (Th1) and T helper 17 (Th17) CD4+ T cell differentiation. Blimp1 overexpression suppressed the expression of pro-inflammatory factors and adhesion molecules in CD4+ T cells by upregulating IL-10. Moreover, Blimp1 overexpression impeded the enhanced effect of CD4+ T cells/CD4CM on cell adhesion, inflammation, proliferation, invasion and RhoA and Rac1 activities in FLSs by upregulating IL-10. Additionally, administration with LV-Blimp1 alleviated the severity of CIA. CONCLUSION: Blimp1 restrained CD4+ T cells-induced activation of FLSs by promoting the secretion of IL-10 in CD4+ T cells via the Rho signaling pathway.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Animales , Ratones , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos , Interleucina-10/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Sinoviocitos/metabolismo , Linfocitos T/metabolismo
5.
Front Chem ; 10: 964662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017170

RESUMEN

Chronic wound healing in diabetic patients had been considered a major clinical challenge, so there was an urgent need to establish more effective treatment methods. In this study, we prepared berberine-modified ZnO nano-colloids hydrogel (ZnO-Ber/H) and evaluated its wound healing performance in a diabetic rat. The prepared ZnO-Ber/H had excellent moisturizing, anti-inflammatory and anti-oxidative stress abilities. In vitro, ZnO-Ber/H could effectively up-regulate antioxidant stress factors (Nrf2, HO-1, NQO1) by 4.65-fold, 2.49-fold, 2.56-fold, respectively. In vivo experiments have shown that ZnO-Ber/H could effectively improve the wound healing rate (92.9%) after 15 days of treatment. Meanwhile, the ability of anti-oxidative stress had also been verified in vivo. ZnO-Ber/H down-regulated inflammatory factor (TNF-α, IL-1ß, and IL-6) by 72.8%, 55% and 71% respectively, up-regulated vascular related factors VEGF and CD31 by 3.9-fold and 3.2-fold by Western blot. At the same time, ZnO-Ber/H could promote the expression of EGFR and FGFR, thereby affecting the generation of new epithelial tissue. Based on extensive characterization and biological evaluation, ZnO-Ber/H was expected to be a potential candidate for promoting diabetic wound healing.

6.
Front Chem ; 10: 926002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720982

RESUMEN

Hepatocellular carcinoma (HCC) is a type of cancer that has a restricted therapy option. Epigallocatechin gallate (EGCG) is one of the main biologically active ingredients in tea. A large number of studies have shown that EGCG has preventive and therapeutic effects on various tumors. In addition, the development of near-infrared (NIR)-responsive nano-platforms has been attracting cancer treatment. In this work, we designed and synthesized a strategy of gold nanocages (AuNCs) as an efficient carrier for controlling release of EGCG for anti-tumor to achieve the synergistic functions of NIR-response and inhibited tumor cell proliferation. The diameter of AuNCs is about 50 nm and has a hollow porous (8 nm) structure. Thermal imaging-graphic studies proved that the AuNCs-EGCG obtained have photothermal response to laser irradiation under near-infrared light and still maintain light stability after multiple cycles of laser irradiation. The resulted AuNCs-EGCG reduced the proliferation rate of HepG2 cells to 50% at 48 h. Western blot analysis showed that NIR-responsive AuNCs-EGCG can promote the expression of HepG2 cell apoptosis-related proteins HSP70, Cytochrome C, Caspase-9, Caspase-3, and Bax, while the expression of Bcl-2 is inhibited. Cell confocal microscopy analysis proved that AuNCs-EGCG irradiated by NIR significantly upregulates Caspase-3 by nearly 2-fold and downregulates Bcl-2 by nearly 0.33-fold, which is beneficial to promote HepG2 cell apoptosis. This study provides useful information for the NIR-responsive AuNCs-EGCG as a new type of nanomedicine for HCC.

7.
Regen Biomater ; 9: rbab072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558096

RESUMEN

Spinal cord injury (SCI) leads to nerve cell apoptosis and loss of motor function. Herein, excessive activation of the M1 phenotype macrophages/microglia is found to be the main reason for the poor prognosis of SCI, but the selective activation phenotype (M2) macrophages/microglia facilitates the recovery of SCI. Thereafter, we used gold nanoclusters loaded berberine (BRB-AuNCs) to reduce inflammation by inhibiting the activation of M1 phenotype macrophages/microglia, which simultaneously inhibited neuronal apoptosis after SCI. In vitro and in vivo experiments showed that BRB-AuNCs reduced M1 protein marker CD86, increased M2 protein marker CD206, reduced inflammation and apoptotic cytokines (IL-1ß, IL-6, TNF-α, Cleaved Caspase-3 and Bax). These results indicate that BRB-AuNCs have excellent anti-inflammatory and anti-apoptotic effects by inducing the polarization of macrophages/microglia from M1 phenotype to M2 phenotype. Thereafter, the motor functions of SCI rats were significantly improved after treatment with BRB-AuNCs. This work not only provides a new way for the treatment of SCI but also broadens BRB utilization strategies.

8.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35370362

RESUMEN

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

9.
Anal Cell Pathol (Amst) ; 2022: 3634908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387358

RESUMEN

Spinal cord injury (SCI) is an extreme neurological impairment with few effective drug treatments. Pyroptosis is a recently found and proven type of programmed cell death that is characterized by a reliance on inflammatory caspases and the release of a large number of proinflammatory chemicals. Pyroptosis differs from other cell death mechanisms such as apoptosis and necrosis in terms of morphological traits, incidence, and regulatory mechanism. Pyroptosis is widely involved in the occurrence and development of SCI. In-depth research on pyroptosis will help researchers better understand its involvement in the onset, progression, and prognosis of SCI, as well as provide new therapeutic prevention and treatment options. Herein, we investigated the role of AMPK-mediated activation of the NLRP3 inflammasome in the neuroprotection of MET-regulated pyroptosis. We found that MET treatment reduced NLRP3 inflammasome activation by activating phosphorylated AMPK and reduced proinflammatory cytokine (IL-1ß, IL-6, and TNF-α) release. At the same time, MET improved motor function recovery in rats after SCI by reducing motor neuron loss in the anterior horn of the spinal cord. Taken together, our study confirmed that MET inhibits neuronal pyroptosis after SCI via the AMPK/NLRP3 signaling pathway, which is mostly dependent on the AMPK pathway increase, hence decreasing NLRP3 inflammasome activation.


Asunto(s)
Metformina , Traumatismos de la Médula Espinal , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Animales , Inflamasomas/metabolismo , Inflamasomas/farmacología , Metformina/farmacología , Metformina/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Ratas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo
10.
ACS Appl Mater Interfaces ; 14(16): 18053-18063, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35417127

RESUMEN

Rheumatoid arthritis (RA) is an incurable chronic disorder that may induce autoinflammation and serious pain in the joints. Early diagnosis and treatment are important for RA prognosis. However, there is a lack of effective and objective diagnostic approaches. Levels of several immunity cytokines were found to change for patients with early RA, including IL-6, TNF-α, and IL-17 in serum. We assumed a combined change of these cytokines could predict early RA, and a total of 37 outpatients were found. After these patients with early symptoms had been followed for more than one year, 32 clinical cases of RA were diagnosed. The accuracy rate of the current method is >86%. We assumed the symptom relief could be achieved by regulating these cytokines and serum lipid-associated indicators. Thereafter, (R)-dihydrolipoic acid (R-DHLA)-stabilized gold nanoclusters (AuNCs) without (R-DHLA-AuNCs) and with cerium modification (R-DHLA-AuNCs-Ce) were employed for treatment of the RA rat model in vitro and in vivo. R-DHLA-AuNCs-Ce exhibited extraordinary reactive oxygen species-scavenging and anti-inflammation effects by regulating macrophage polarization, which was found to be more effective than methotrexate. The inflammation response of the joint microenvironment was also reduced with an exciting efficiency. By complex analysis of the pro-inflammatory cytokines and activity period indicators in vivo and in vitro, we concluded that macrophage-mediated inflammation exacerbated autoimmunity, which fully relieved the symptoms after administration of R-DHLA-AuNCs-Ce to RA rats.


Asunto(s)
Artritis Reumatoide , Cerio , Nanopartículas del Metal , Animales , Artritis Reumatoide/tratamiento farmacológico , Cerio/uso terapéutico , Citocinas , Oro/uso terapéutico , Humanos , Inflamación , Nanopartículas del Metal/uso terapéutico , Ratas
11.
J Nanobiotechnology ; 19(1): 281, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544425

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is damage to the central nervous system (CNS) that causes devastating complications from chronic pain to breathing problems. Unfortunately, few effective and safe treatments are known to relieve the damages of SCI. Nanomedicines are used for the treatment of SCI with relatively few side effects, but only depending on the delivery of additional drugs, which increase complexity to the treatment. Considering the urgent need for saving SCI patients, it is important to develop promising nanobiotechnology for relieving their pains. METHODS: The clinical survey was used to investigate SCI patients, thereafter the therapy plan was designed. The receiver-operating characteristics (ROC) curves of the prediction model were built to find symptoms after SCI. The treatment plan (i.e. immunosuppressive strategy) was designed by manufacturing therapies based on gold nanoclusters (AuNCs). The response of the immune cells (macrophages) was studied accordingly. The western blot, reactive oxygen species (ROS) activity assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (RT-qPCR), and immunochemical staining were used for evaluation of the in vivo and in vitro therapeutic effects. RESULTS: We found increased monocytes/macrophages (M/Ms) levels in 114 SCI subjects (44.7% with severe SCI complications) by the clinical survey. Additionally, the enhanced macrophage level was found to be closely related to the walking disorder after SCI. Since macrophages were central effector cells of the immune system, we assumed that the immune-suppressing strategies could be used for SCI therapy. Thereafter, AuNCs were stabilized by dihydrolipoic acid (DHLA) enantiomers (including DL-DHLA, R-DHLA; A racemic mixture (R and S) was denoted as DL; R and S refer to Rectus and Sinister), obtaining DL-DHLA-AuNCs and R-DHLA-AuNCs, respectively. In addition, zinc-modified DL-DHLA and R-DHLA stabilized AuNCs (i.e., DL-DHLA-AuNCs-Zn and R-DHLA-AuNCs-Zn) were investigated. Among these AuNCs, R-DHLA-AuNCs-Zn showed the most remarkable therapeutic effect for promoting the polarization of pro-inflammatory macrophages and reducing neuronal ROS-induced apoptosis and inflammation in vitro and in vivo; the lesion size was decreased and the survival rate of ventral neurons is higher. CONCLUSIONS: R-DHLA-AuNCs-Zn have comprehensive therapeutic capabilities, especially the immune-suppressing effects for the therapy of SCI, which is promising to relieve the pain or even recover SCI for the patients.


Asunto(s)
Oro/química , Nanopartículas del Metal/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Zinc/química , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Linfocitos/citología , Linfocitos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Monocitos/citología , Monocitos/inmunología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Pronóstico , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología , Estereoisomerismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química
12.
Free Radic Biol Med ; 172: 622-632, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34252538

RESUMEN

Macrophages and microglia (M/Ms) in the injured spinal cord maintain a predominantly neurotoxic M1 phenotype that is disadvantageous to repair in the development of spinal cord injury (SCI). It has been reported that tumor necrosis factor (TNF) that polarize M/Ms toward M1 state in various disorders. In this study, we found that ablation of TNF endorsed the beneficial conversion from M1 to M2 phenotype and improved the mitochondrial metabolism in vivo and in vitro. In addition, PGC-1α that accumulates in TNF null mice, a major participant of mitochondrial metabolism, downregulated ROS activity and the expressions of M1-specific mRNA. Moreover, the absence of TNF upgraded the morphology and quantity of damaged mitochondria and rapidly switched to M2 phenotype as compare to administration of N-Acetyl-l-cysteine (NAC). Furthermore, systemic application of TPEN showed that increased ratio of M1 M/Ms. These combined results supporting predominant and prolonged TNF expression that is destructive to recovery after SCI. These results indicated that TNF would have great potential immunomodulatory for the treatment of SCI.


Asunto(s)
Microglía , Factor de Necrosis Tumoral alfa , Animales , Humanos , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Mitocondrias , Médula Espinal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Bioengineered ; 12(1): 2702-2712, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34151707

RESUMEN

Spinal cord injury (SCI) is a refractory disease often accompanied by inflammation. Long non-coding RNA NEAT1 (lncRNA NEAT1) was reported to be involved in the expression of the inflammasomes, while the regulatory effect of NEAT1 on SCI was poorly investigated. Herein, we carried out further studies on the pathogenesis of SCI. PC-12 cells were incubated with lipopolysaccharide (LPS) to induce inflammation. Western blotting assay was used to measure the protein expression levels. RNA expression levels were analyzed using RT-qPCR. Cell counting kit 8 and flow cytometry assays were used to separately determine the cell viability and apoptosis rate. The targeted relationships were verified by luciferase reporter and RNA pull-down assays. It was found that LPS induced inflammation in the PC-12 cells, leading to significantly higher cell apoptosis rate and lower viability, and the expression level of NEAT1 was elevated by LPS. However, knockdown of NEAT1 partially reversed the effects of LPS. Subsequently, the potential interaction between NEAT1 and miR-211-5p was validated and miR-211-5p inhibitor was further confirmed to antagonize the effects of NEAT knockdown. The downstream target gene of miR-211-5p was predicted and verified to be MAPK1. In addition, overexpression of MAPK1 was proved to antagonize the effects of NEAT1 knockdown. Taken together, the knockdown of NEAT1 remarkably alleviated the inflammation of SCI via miR-211-5p/MAPK1 axis.


Asunto(s)
MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , ARN Largo no Codificante/genética , Traumatismos de la Médula Espinal , Animales , Apoptosis/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Inflamación/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Células PC12 , ARN Largo no Codificante/metabolismo , Ratas , Transducción de Señal/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
14.
Biomed Pharmacother ; 138: 111413, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33677310

RESUMEN

BACKGROUND: Monosodium urate (MSU)-mediated inflammatory response is a crucial inducing factor in gouty arthritis. Here, we explored the underlying mechanism of total glucosides of paeony (TGP) in MSU-induced inflammation of THP-1 macrophages in gouty arthritis. METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the production of interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α). Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine RNA and protein expression. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay were used to confirm the interaction between miR-876-5p and MALAT1 or NLR family pyrin domain containing 3 (NLRP3). RESULTS: MSU-induced damage and inflammatory response in THP-1 macrophages were alleviated by the treatment of TGP in a dose-dependent manner. Overexpression of NLRP3 or MALAT1 reversed the protective effects of TGP in MSU-induced THP-1 macrophages. The binding relation between miR-876-5p and MALAT1 or NLRP3 was identified in THP-1 macrophages. MALAT1 up-regulated the expression of NLRP3 by sponging miR-876-5p in THP-1 macrophages. TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis. TGP suppressed MSU-induced activation of TLR4/MyD88/NF-κB pathway through regulating MALAT1/miR-876-5p/NLRP3 axis. CONCLUSION: In conclusion, TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis and TLR4/MyD88/NF-κB pathway, suggesting that TGP was a promising active ingredient for gouty arthritis treatment.


Asunto(s)
Artritis Gotosa/metabolismo , Glucósidos/uso terapéutico , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Paeonia , ARN Largo no Codificante/metabolismo , Ácido Úrico/toxicidad , Artritis Gotosa/inducido químicamente , Artritis Gotosa/prevención & control , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células THP-1/efectos de los fármacos , Células THP-1/metabolismo
15.
Front Bioeng Biotechnol ; 9: 796361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096792

RESUMEN

Spinal cord injury (SCI) is one of the most destructive diseases. The neuroinflammation microenvironment needs comprehensive mitigation of damages. Thus, regulation of local, microenvironment drugs could be a potential effective treatment. However, clinical studies on SCI with common treatment have reported it to cause systemic toxicity and side effects. Zinc oxide nanoparticles (ZnONPs) have been widely reported to have satisfying anti-inflammation function. Furthermore, green synthesis procedures can improve the capability and possible utilization of ZnONPs. However, the efficient administration and underlying mechanism of ZnONPs in SCI treatment remain unclear. Herein, an innovative approach was built by utilizing ZnONPs loaded in a skeletal muscle-derived adhesive hydrogel (ZnONPs-Gel). Different from the systemic application of ZnONPs, the local administration of ZnONPs-Gel offered the ZnONPs-loaded extracellular matrix with beneficial biocompatibility to the injured spinal cord, thereby promoting effective function recovery. Mechanistically, the ZnONPs-Gel treatment not only markedly reduced ROS production but also decreased apoptosis in the injured spinal cord. Therefore, the strategy based on local administration of the ZnONPs-Gel in the early stage of SCI may be an effective therapeutic treatment.

16.
Front Cell Neurosci ; 12: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875635

RESUMEN

Spinal cord injury (SCI) is a severe neurological trauma that involves complex pathological processes. Inflammatory response and oxidative stress are prevalent during the second injury and can influence the functional recovery of SCI. Specially, Apolipoprotein E (APOE) induces neuronal repair and nerve regeneration, and the deficiency of Apoe impairs spinal cord-blood-barrier and reduces functional recovery after SCI. However, the mechanism by which Apoe mediates signaling pathways of inflammatory response and oxidative stress in SCI remains largely elusive. This study was designed to investigate the signaling pathways that regulate Apoe deficiency-dependent inflammatory response and oxidative stress in the acute stage of SCI. In the present study, Apoe-/- mice retarded functional recovery and had a larger lesion size when compared to wild-type mice after SCI. Moreover, deficiency of Apoe induced an exaggerated inflammatory response by increasing expression of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), and increased oxidative stress by reducing expression of Nrf2 and HO-1. Furthermore, lack of Apoe promoted neuronal apoptosis and decreased neuronal numbers in the anterior horn of the spinal cord after SCI. Mechanistically, we found that the absence of Apoe increased inflammation and oxidative stress through activation of NF-κB after SCI. In contrast, an inhibitor of nuclear factor-κB (NF-κB; Pyrrolidine dithiocarbamate) alleviates these changes. Collectively, these results indicate that a critical role for activation of NF-κB in regulating Apoe-deficiency dependent inflammation and oxidative stress is detrimental to recovery after SCI.

17.
Neurochem Res ; 43(7): 1405-1412, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29790067

RESUMEN

Wnt signaling are recognized key factors in neuronal development, cell proliferation and axonal guidance. However, RAGE effect on wnt signaling after spinal cord injury (SCI) are poorly understood. Our study aims to explore RAGE blockade effect on wnt signaling after SCI. We constructed Allen SCI model and micro-injected with RAGE neutralizing antibody or IgG after injury. We determined ß-catenin, wnt3a and its receptor frizzled-5 via Western blot. We determined ß-catenin/NeuN expression at 2 weeks after SCI via immunofluorescence (IF). We found that ß-catenin, wnt3a and wnt receptor frizzled5 expression were activated after SCI at 3 days after injury. However, RAGE blockade inhibit ß-catenin, wnt3a and frizzled5 expression. We found that ß-catenin accumulation in NeuN cells were activated after SCI via IF, however, RAGE blockade reduced ß-catenin and NeuN positive cells. RAGE blockade attenuated number of survived neurons and decreased area of spared white matter around the epicenter. RAGE signaling may involved in disrupting wnt signaling to aids neuronal recovery after SCI.


Asunto(s)
Neuronas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Femenino , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología , Vértebras Torácicas , Vía de Señalización Wnt/efectos de los fármacos
18.
Biomed Res Int ; 2018: 4934861, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29707570

RESUMEN

Whole body vibration (WBV) has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS). To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE-/-) AS mice, which were trained by WBV (15 Hz, 30 min) for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R), interleukin 6 (IL-6), and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL) and oxidized low-density lipoprotein (ox-LDL) in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/prevención & control , Factor I del Crecimiento Similar a la Insulina/metabolismo , Vibración/uso terapéutico , Animales , Aterosclerosis/sangre , Aterosclerosis/genética , Factor I del Crecimiento Similar a la Insulina/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
19.
Cell Death Dis ; 8(11): e3162, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29095439

RESUMEN

The microtubule-stabilizing drug epothilone B (epoB) has shown potential value in the treatment of spinal cord injury (SCI) through diverse mechanisms. However, it remains elusive why a limited overall effect was observed. We aim to investigate the limiting factors underlying functional recovery promoted by epoB. The same SCI model treated by epoB was established as discussed previously. We used a cerebrospinal fluid (CSF) sample to assess the changes in cytokines in milieu of the SCI lesion site after epoB treatment. We then analyzed the source of cytokines, the state of microglia/macrophages/monocytes (M/Ms), and the recruitment of neutrophil in the lesion site by using the results of antibody array. Following these findings, we further evaluated the motor functional recovery caused by the reshaped microenvironment. Systemic administration of epoB significantly increased levels of several cytokines in the CSF of the rat SCI model; macrophage colony-stimulating factor (M-CSF) secreted by intact central nervous system (CNS) cells was one of the cytokines with increased levels. Along with epoB and other cytokines, M-CSF reshapes the SCI milieu by activating the microglias, killing bone marrow-derived macrophages, polarizing the M/M to M1 phenotype, and activating downstream cytokines to exacerbate the SCI injury, but it also increases the expression of neurotrophic factors. Anti-inflammatory therapy using a neutralizing antibody mix shows encouraging results. Using in vivo experiments, our findings indicate that epoB inhibits the SCI functional recovery in many ways by reshaping the milieu, which counteracts the therapeutic efficacy that led to the limited overall effectiveness.


Asunto(s)
Epotilonas/uso terapéutico , Factor Estimulante de Colonias de Macrófagos/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Astrocitos/citología , Astrocitos/metabolismo , Línea Celular , Polaridad Celular/efectos de los fármacos , Citocinas/líquido cefalorraquídeo , Modelos Animales de Enfermedad , Epotilonas/farmacología , Femenino , Locomoción/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/patología , Linfocitos T/citología , Linfocitos T/metabolismo
20.
Exp Cell Res ; 361(1): 155-162, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054488

RESUMEN

JMJD2A is a JmjC histone demethylase that catalyzes the demethylation of di- and trimethylated Lys9 and Lys36 in histone H3 (H3K9me2/3 and H3K36me2/3). The role of spinal JMJD2A-dependent histone demethylation in nociception hypersensitivity development remains elusive. Here we reported that the JMJD2A responded to neuropathic pain and participated in the maintenance of neuropathic pain. The mRNA and protein levels of Jmjd2a were significantly increased in the neurons of mouse undergoing neuropathic pain induced by sciatic nerve chronic constrictive injury (CCI) or unilateral spared nerve injury (SNI). Jmjd2a responded to 5-hydroxytryptamine (5-HT) and promoted the expression of the brain-derived neurotrophic factor (Bdnf), which is a protein critically involved in neuropathic pain. JMJD2A bound to the promoter of Bdnf and demethylated H3K9me3 and H3K36me3 at Bdnf promoter to promote the expression of Bdnf. Finally, we showed that JMJD2A promoted the expression of Bdnf during neuropathic pain and neuron-specific knockout of Jmjd2a blocked the hypersensitivity of mice undergoing chronic neuropathic pain induced by CCI and SNI. Taken together, our findings demonstrate that up-regulation of JMJD2A promotes neuropathic pain and it may serve as a promising target for treatment of chronic neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Histona Demetilasas/fisiología , Neuralgia/etiología , Neuronas/patología , Traumatismos de los Nervios Periféricos/complicaciones , Nervio Ciático/lesiones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Neuralgia/patología , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...