RESUMEN
Quantum networks provide a prospective paradigm to connect separated quantum nodes, which relies on the distribution of long-distance entanglement and active feedforward control of qubits between remote nodes. Such approaches can be utilized to construct nonlocal quantum gates, forming building blocks for distributed quantum computing and other novel quantum applications. However, these gates have only been realized within single nodes or between nodes separated by a few tens of meters, limiting the ability to harness computing resources in large-scale quantum networks. Here, we demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km using stationary qubits based on multiplexed quantum memories, flying qubits at telecom wavelengths, and active feedforward control based on field-deployed fibers. Furthermore, we illustrate quantum parallelism by implementing the Deutsch-Jozsa algorithm and the quantum phase estimation algorithm between the two remote nodes. These results represent a proof-of-principle demonstration of quantum gates over metropolitan-scale distances and lay the foundation for the construction of large-scale distributed quantum networks relying on existing fiber channels.
RESUMEN
Photonic integrated quantum memories are essential for the construction of scalable quantum networks. Spin-wave quantum storage, which can support on-demand retrieval with a long lifetime, is indispensable for practical applications, but has never been demonstrated in an integrated solid-state device. Here, we demonstrate spin-wave quantum storage based on a laser-written waveguide fabricated in a 151Eu3+:Y2SiO5 crystal, using both the atomic frequency comb and noiseless photon-echo protocols. Qubits encoded with single-photon-level inputs are stored and retrieved with a fidelity of [Formula: see text], which is far beyond the maximal fidelity that can be obtained with any classical device. Our results underline the potential of laser-written integrated devices for practical applications in large-scale quantum networks, such as the construction of multiplexed quantum repeaters in an integrated configuration and high-density transportable quantum memories.
RESUMEN
Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.
RESUMEN
Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.
RESUMEN
Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics of microwave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V[Formula: see text]) spin ensemble in hBN. We report on different dynamics of the V[Formula: see text] spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V[Formula: see text] and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V[Formula: see text] center, which can be modulated by the magnetic field and microwave field.
RESUMEN
Photonic polarization qubits are widely used in quantum computation and quantum communication due to the robustness in transmission and the easy qubit manipulation. An integrated quantum memory for polarization qubits is a useful building block for large-scale integrated quantum networks. However, on-demand storing polarization qubits in an integrated quantum memory is a long-standing challenge due to the anisotropic absorption of solids and the polarization-dependent features of microstructures. Here we demonstrate a reliable on-demand quantum memory for polarization qubits, using a depressed-cladding waveguide fabricated in a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal. The site-2 ^{151}Eu^{3+} ions in Y_{2}SiO_{5} crystal provides a near-uniform absorption for arbitrary polarization states and a new pump sequence is developed to prepare a wideband and enhanced absorption profile. A fidelity of 99.4±0.6% is obtained for the qubit storage process with an input of 0.32 photons per pulse, together with a storage bandwidth of 10 MHz. This reliable integrated quantum memory for polarization qubits reveals the potential for use in the construction of integrated quantum networks.
RESUMEN
Photon echo is a fundamental tool for the manipulation of electromagnetic fields. Unavoidable spontaneous emission noise is generated in this process due to the strong rephasing pulse, which limits the achievable signal-to-noise ratio and represents a fundamental obstacle towards their applications in the quantum regime. Here we propose a noiseless photon-echo protocol based on a four-level atomic system. We implement this protocol in a Eu3+:Y2SiO5 crystal to serve as an optical quantum memory. A storage fidelity of 0.952 ± 0.018 is obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity achievable using the classical measure-and-prepare strategy. In this work, the demonstrated noiseless photon-echo quantum memory features spin-wave storage, easy operation and high storage fidelity, which should be easily extended to other physical systems.
RESUMEN
Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground1. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping2. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories3-9. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.
RESUMEN
In optical metrological protocols to measure physical quantities, it is, in principle, always beneficial to increase photon number n to improve measurement precision. However, practical constraints prevent the arbitrary increase of n due to the imperfections of a practical detector, especially when the detector response is dominated by the saturation effect. In this work, we show that a modified weak measurement protocol, namely, biased weak measurement significantly improves the precision of optical metrology in the presence of saturation effect. This method detects an ultra-small fraction of photons while maintains a considerable amount of metrological information. The biased pre-coupling leads to an additional reduction of photons in the post-selection and generates an extinction point in the spectrum distribution, which is extremely sensitive to the estimated parameter and difficult to be saturated. Therefore, the Fisher information can be persistently enhanced by increasing the photon number. In our magnetic-sensing experiment, biased weak measurement achieves precision approximately one order of magnitude better than those of previously used methods. The proposed method can be applied in various optical measurement schemes to remarkably mitigate the detector saturation effect with low-cost apparatuses.
RESUMEN
Photon loss in optical fibers prevents long-distance distribution of quantum information on the ground. Quantum repeater is proposed to overcome this problem, but the communication distance is still limited so far because of the system complexity of the quantum repeater scheme. Alternative solutions include transportable quantum memory and quantum-memory-equipped satellites, where long-lived optical quantum memories are the key components to realize global quantum communication. However, the longest storage time of the optical memories demonstrated so far is approximately 1 minute. Here, by employing a zero-first-order-Zeeman magnetic field and dynamical decoupling to protect the spin coherence in a solid, we demonstrate coherent storage of light in an atomic frequency comb memory over 1 hour, leading to a promising future for large-scale quantum communication based on long-lived solid-state quantum memories.
RESUMEN
Stable quantum memories that capable of storing quantum information for long time scales are an essential building block for an array of potential applications. The long memory time are usually achieved via dynamical decoupling technique involving decoupling of the memory states from its local environment. However, because this process is strongly limited by the errors in the pulses, an noise-protected scheme remains challenging in the field of quantum memories. Here we propose a scheme to design a noise-resisted [Formula: see text] pulse, which features high fidelity exceeding [Formula: see text] under realistic situations. Using this [Formula: see text] pulse we can generate different dynamical decoupling sequences that preserve high fidelity for long time scales. The versatility, robustness, and potential scalability of this method may allow for various applications in quantum memories technology.
RESUMEN
Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins in silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration sixfold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature, and the coherence time T_{2} can be reached to around 17.1 µs. Furthermore, an investigation of fluorescence properties of single NV centers shows that they are room-temperature photostable single-photon sources at telecom range. Taking advantage of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.
RESUMEN
Reliable information transmission between spatially separated nodes is fundamental to a network architecture for scalable quantum technology. Spin qubit in semiconductor quantum dots is a promising candidate for quantum information processing. However, there remains a challenge to design a practical path from the existing experiments to scalable quantum processor. Here we propose a module consisting of spin singlet-triplet qubits and single microwave photons. We show a high degree of control over interactions between the spin qubit and the quantum light field can be achieved. Furthermore, we propose preparation of a shaped single photons with an efficiency of 98%, and deterministic quantum state transfer and entanglement generation between remote nodes with a high fidelity of 90%. This spin-photon module has met the threshold of particular designed error-correction protocols, thus provides a feasible approach towards scalable quantum network architecture.
RESUMEN
Photonic quantum memory is the core element in quantum information processing (QIP). For the scalable and convenient practical applications, great efforts have been devoted to the integrated quantum memory based on various waveguides fabricated in solids. However, on-demand storage of qubits, which is an essential requirement for QIP, is still challenging to be implemented using such integrated quantum memory. Here we report the on-demand storage of time-bin qubits in an on-chip waveguide memory fabricated on the surface of a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal, utilizing the Stark-modulated atomic frequency comb protocol. A qubit storage fidelity of 99.3%±0.2% is obtained with single-photon-level coherent pulses, far beyond the highest fidelity achievable using the classical measure-and-prepare strategy. The developed integrated quantum memory with the on-demand retrieval capability represents an important step toward practical applications of integrated quantum nodes in quantum networks.
RESUMEN
A memory-based quantum repeater architecture provides a solution to distribute quantum information to an arbitrary long distance. Practical quantum repeaters are likely to be built in optical-fiber networks which take advantage of the low-loss transmission between quantum memory nodes. Most quantum memory platforms have characteristic atomic transitions away from the telecommunication band. A nondegenerate photon pair source is therefore useful for connection of a quantum memory to optical fibers. Here, we report a high-brightness narrowband photon-pair source which is compatible with a rare-earth-ion-doped crystal Pr3+:Y2SiO5. The photon-pair source is generated through a cavity-enhanced spontaneous parametric down-conversion process with the signal photon at 606â¯nm and the idler photon at 1540â¯nm. Moreover, using the telecom C-band idler photons for heralding, we demonstrate the reversible transfer of orbital-angular-momentum qubit between the signal photon and the quantum memory based on Pr3+:Y2SiO5.
RESUMEN
The hybrid system of electron spins and resonator photons is an attractive architecture for quantum computing owing to the long coherence times of spins and the promise of long-distance coupling between arbitrary pairs of qubits via photons. For the device to serve as a building block for a quantum processer, it is also necessary to readout the spin qubit state. Here we analyze in detail the measurement process of an electron spin singlet-triplet qubit in quantum dots using a coupled superconducting resonator. We show that the states of the spin singlet-triplet qubit lead to readily observable features in the spectrum of a microwave field through the resonator. These features provide useful information on the hybrid system. Moreover, we discuss the working points which can be implemented with high performance in the current state-of-the-art devices. These results can be used to construct the high fidelity measurement toolbox in the spin-circuit QED system.
RESUMEN
It has been suggested that both quantum superpositions and nonlinear interactions are important resources for quantum metrology. However, to date the different roles that these two resources play in the precision enhancement are not well understood. Here, we experimentally demonstrate a Heisenberg-scaling metrology to measure the parameter governing the nonlinear coupling between two different optical modes. The intense mode with n (more than 10^{6} in our work) photons manifests its effect through the nonlinear interaction strength which is proportional to its average photon number. The superposition state of the weak mode, which contains only a single photon, is responsible for both the linear Hamiltonian and the scaling of the measurement precision. By properly preparing the initial state of single photon and making projective photon-counting measurements, the extracted classical Fisher information (FI) can saturate the quantum FI embedded in the combined state after coupling, which is â¼n^{2} and leads to a practical precision ≃1.2/n. Free from the utilization of entanglement, our work paves a way to realize Heisenberg-scaling precision when only a linear Hamiltonian is involved.