Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9350-9360, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743617

RESUMEN

The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.


Asunto(s)
Reactores Biológicos , Hierro , Aguas Residuales , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Análisis de la Demanda Biológica de Oxígeno , Metano , Biocombustibles , Fósforo , Membranas Artificiales
2.
Appl Opt ; 63(9): 2148-2155, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568566

RESUMEN

A metalens is a flat lens that can control the phase of light so that dispersed light can be reconcentrated. This study devised a tunable metalens with a switchable focal length based on the phase transition properties of vanadium dioxide (V O 2). The unit structure comprises three layers from bottom to top: gold, polyimide, and two square resonant rings. The metalens can not only transform incident x-polarized waves into y-polarized waves but also achieve beam focusing simultaneously. The designed metalens achieves polarization conversion efficiency at an operating frequency of 0.8 THz. In the insulating state of V O 2, the beam focal point is at L=1914µm; in the metallic state, the wave converges at L=982µm, closely aligning with the predetermined focal length. By controlling external temperature, focal point switching can be achieved, making it highly versatile in practical applications.

3.
Phys Chem Chem Phys ; 26(14): 10633-10640, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511282

RESUMEN

A dual-functional switchable metamaterial absorber (MMA) based on vanadium dioxide (VO2), which achieves flexible switching between broadband absorption and four-band absorption by adjusting the VO2 conductivity, was proposed. The device has a broadband absorption function when VO2 is in the metal phase, and the conductivity is 3 × 105 S m-1. Numerical simulation shows that the absorption rate of the device reaches over 90% in the frequency range of 3.36-6.98 THz. The absorber exhibits polarization insensitivity and wide-angle absorption to transverse electric (TE) and transverse magnetic (TM) waves. When VO2 is in the insulator phase, and the conductivity is 3 × 102 S m-1, the device switches to a narrowband absorber with a band-efficient absorption function. Numerical simulation shows that the device has an absorption rate of 99.7% at 2.39 THz, 98.3% at 2.83 THz, 95.6% at 3.84 THz, and 96.1% at 4.61 THz. It can be used as a sensor with high sensitivity. In addition, to verify the absorption mechanism of the absorber, we introduced impedance matching theory to analyze the device. Finally, the influence of structural parameters on the performance of resonators was investigated. Through the joint action of multi-layer structures, the proposed MMA concentrates broadband and narrowband absorption functions on one device, achieving flexible switching between tasks without changing the structure. The switchable metamaterial absorber designed through simple tuning methods has broad application prospects in stealth technology and thermal emitters. It provides a wide range of ideas for the design of terahertz functional devices.

4.
Sci Total Environ ; 899: 165701, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37482349

RESUMEN

A 15 L high-solid mesophilic AnMBR was operated for the digestion of food waste, primary sludge and excess sludge. The digestion performance was evaluated from the perspective of methane generation, permeate quality and organic reduction. Furthermore, the change in the microbial community was investigated by 16S rRNA gene analysis. The results showed that the introduction of sludge decreased the H2S levels in biogas compared with the mono-digestion of food waste and the co-digestion with food waste increased biogas and methane production compared with the mono-digestion of sludge. A substitution ratio of 25 % became a turning point of permeate composition and reaction rates. The energy recovery ratios of the mesophilic AnMBR were over 75 % based on stoichiometric analysis. In reaction kinetics analysis, hydrolysis as the first step of anaerobic digestion was found to be most influenced by the composition of the substrate. Finally, the microbial community structures were stable under tested conditions while the evolutionary relationships within the dominant phyla were observed. In the archaea community, Methanosaeta was the dominant methanogen regardless sludge ratio in the substrate.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Aguas del Alcantarillado/química , Biocombustibles , ARN Ribosómico 16S , Reactores Biológicos , Metano , Digestión
5.
Int J Biol Macromol ; 242(Pt 3): 125097, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268069

RESUMEN

Dietary fish oil (FO) replacement has led to an inflammatory response in fish species. This study aimed to identify immune-related proteins in the liver tissue of fish fed a FO-based or soybean oil (SO)-based diet. By conducting proteomics and phosphoproteomics analyses, a total of 1601 differentially expressed proteins (DEPs) and 460 differentially abundant phosphorylated proteins (DAPs) were identified, respectively. Enrichment analysis revealed immune-related proteins involved in bacterial infection, pathogen identification, cytokine production, and cell chemotaxis. The mitogen-activated protein kinase (MAPK) pathway exhibited significant alterations in both protein and phosphorylation levels, with several hub DEPs and DAPs associated with MAPK pathway and leukocyte transendothelial migration being notable. In vitro experiments indicated that linolenic acid (LNA), derived from SO, inhibited the expression of NF-E2-related factor 2 (Nrf2), but increased the expression of signaling proteins linked to nuclear factor κB (NF-κB) and MAPK pathways. Transwell assays indicated that treatment of liver cells with LNA promoted macrophage migration. Collectively, the results showed that the SO-based diet upregulated the expression of NF-κB signaling-related proteins and activated the MAPK pathway, promoting immune cell migration. These findings provide novel insights for developing effective solutions to alleviate health problems caused by dietary high levels of SO inclusion.


Asunto(s)
Perciformes , Aceite de Soja , Animales , FN-kappa B/metabolismo , Proteómica , Hígado , Dieta , Perciformes/metabolismo
6.
Bioresour Technol ; 359: 127495, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35718246

RESUMEN

The anaerobic digestion (AD) of dairy processing wastewater (DPW) to produce bioenergy is considered promising but also associated with the possibility of an unbalanced organic matter and trace metal (TM) content. In this study, the TM content and its impact on AD were determined in an anaerobic membrane bioreactor operated to treat DPW. The results indicated that a deficiency in TMs resulted in the slow deterioration of the process, reducing biogas production, disrupting the buffer system, and the massive accumulation of organic acid. The deficiency of Co/Ni was significant, while iron fluctuated due to microbial and chemical effects. Syntrophic propionate oxidizing bacteria and methanogen were the main groups suppressed under the TM deficient environment, resulting in AD failure. No inhibitory effect on the lactic acid metabolism was observed. Hence, supplying theoretical TM dosage to DPW was necessary to realize the efficient and stable AD process and robust microbial community.


Asunto(s)
Microbiota , Oligoelementos , Anaerobiosis , Reactores Biológicos/microbiología , Metano/metabolismo , Aguas Residuales
7.
Bioresour Technol ; 357: 127349, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35605772

RESUMEN

Dairy product wastewater contains high-strength organic matter suitable for anaerobic treatment, but excessive protein degradation may lead to an ammonia inhibition problem. This work studied protein-rich dairy product wastewater treatment in the anaerobic membrane bioreactor. The results showed that a temporary self-detoxification phase of ammonia inhibition from the change of pH buffer system was vital for rapid reactor recovery by substrate dilution. The ammonia washout from the reactor was simulated by a kinetic model. After ammonia inhibition, the relative abundance of syntrophic lactic and propionic acids oxidising bacteria significantly reduced along with fermentative bacteria involved in mixed organic acids production. Nevertheless, the relative abundance of the protein degradation bacteria producing acetic acid and H2/CO2 increased. A potential metabolic process change was proposed by profiling the functional community. To conclude, substrate dilution is essential for overcoming ammonia inhibition in the anaerobic treatment of protein-rich dairy product wastewater.


Asunto(s)
Euryarchaeota , Microbiota , Amoníaco/metabolismo , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos/microbiología , Productos Lácteos , Euryarchaeota/metabolismo , Metano , Aguas Residuales
8.
Bioresour Technol ; 342: 125938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34547708

RESUMEN

The methanogenic performance and microbial community of the thermophilic anaerobic mono-digestion and co-digestion of food waste and sewage sludge in a high-solid membrane bioreactor were investigated by a continuous experiment. The methane recovery rate of the system reached 98.0% and 89.0% when the substrate was pure food waste and 25% sewage sludge substitution, respectively. Kinetics characterization showed that hydrolysis was the rate-limiting step in both mono-digestion and co-digestion while methanogenic performance and microbial community were significantly affected by feed condition. The dominant archaea for methane generation shifted from Methanothermobacter thermophilus (72.82%) to Methanosarcina thermophila (96.25%) with sewage sludge gradually added from 0% to 100% in the substrate. The relationships between digestion performance, such as the accumulation of soluble proteins in the reactor, and functional microbial groups were also carefully analyzed. Finally, reasonable metabolic pathways for mono-digestion and co-digestion were summarized.


Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Digestión , Alimentos , Aguas del Alcantarillado
9.
Bioresour Technol ; 337: 125371, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34126356

RESUMEN

To recover the biogas from sewage sludge and paper waste (PW), the methanogenic performance of thermophilic anaerobic co-digestion of sewage sludge with PW was assessed by a continuous experiment. The effects on the biogas production and microbial community were investigated by changing the PW ratio from 0 to 66.7%. The optimal performance was obtained at the ratio of sewage sludge: PW = 4:6 (total solids), where the COD removal efficiency and biogas production increased from 58.34±5.90% to 72.92±0.08% and 438±53 to 594±72 mL/g-VSadded, respectively. By investigating the trend of carbohydrate and protein degradation rates, the competition between carbohydrate and protein degradation was quantified. The critical PW addition ratio was about (63.64%), where the protein degradation rate decreased to zero with increasing PW addition. Meanwhile, the microbial analysis showed that cellulolytic bacteria outcompeted proteolytic bacteria and to be the predominant group after PW addition.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Biocombustibles , Reactores Biológicos , Digestión , Metano
10.
PLoS One ; 16(5): e0251204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956841

RESUMEN

Political optimizer (PO) is a relatively state-of-the-art meta-heuristic optimization technique for global optimization problems, as well as real-world engineering optimization, which mimics the multi-staged process of politics in human society. However, due to a greedy strategy during the election phase, and an inappropriate balance of global exploration and local exploitation during the party switching stage, it suffers from stagnation in local optima with a low convergence accuracy. To overcome such drawbacks, a sequence of novel PO variants were proposed by integrating PO with Quadratic Interpolation, Advance Quadratic Interpolation, Cubic Interpolation, Lagrange Interpolation, Newton Interpolation, and Refraction Learning (RL). The main contributions of this work are listed as follows. (1) The interpolation strategy was adopted to help the current global optima jump out of local optima. (2) Specifically, RL was integrated into PO to improve the diversity of the population. (3) To improve the ability of balancing exploration and exploitation during the party switching stage, a logistic model was proposed to maintain a good balance. To the best of our knowledge, PO combined with the interpolation strategy and RL was proposed here for the first time. The performance of the best PO variant was evaluated by 19 widely used benchmark functions and 30 test functions from the IEEE CEC 2014. Experimental results revealed the superior performance of the proposed algorithm in terms of exploration capacity.

11.
Sci Total Environ ; 781: 146764, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33812103

RESUMEN

Determining water supply intensity of fracture/conduits is one of the difficulties involved in the research of plant transpiration water consumption in the Karst Critical Zone (KCZ). Our aims were to evaluate the effect of groundwater depth on plant sap flow velocities in KCZ. Thus, four sampled plots with different groundwater depth (GD) in boreholes KCZ7 (4 to 10 m GD), KCZ5 (2 to 9 m GD), KCZ1 (0 to 8 m GD) and KCZ3 (2 to 5 m GD), were selected, and the plant stem sap flow velocity in each plot were also monitored continuously and automatically using heat ratio techniques. The daily sap flow flux of Toona sinensis varied between 0.35 kg d-1 in KCZ3 and 1.50 kg d-1 in KCZ1. Photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and gust velocity (ZWS) were the primary meteorological factors that determined the sap flow velocity of T. sinensis, which contributed to a regression equation, while the influence of GD on sap flow was complex. Most of the sap flow velocity had no obvious significant correlation with the GD; however, the sap flow velocity in four different GD showed significant differences (P < 0.05). Unit sap flow velocity changes induced by unit GD changes (Kv) in KCZ7 and KCZ1 samples was faster than that of other samples. In brief, the sap flow velocity was mainly affected by the PAR and VPD in KCZ7, KCZ5 and KCZ1 because of the sufficient epikarst water, while the sap flow velocity in KCZ3 was mainly affected by the rock water content. The karst aquifer medium and GD was the main factors causing the difference sap flow velocity in the four sample plots. This finding indicated that KCZ aquifer medium structure may have an important influence on plant water utilization.

12.
Sci Total Environ ; 724: 138168, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32247142

RESUMEN

Two temperature-phased anaerobic digestion (TPAD) systems (55 °C in the first reactor and 35 °C in the second reactor) with and without recirculation were operated in parallel for the co-digestion of food waste and paper waste. A long-term experiment was carried out for these two systems with the paper waste ratios elevated from 0 to 50%. The removal efficiencies of COD, TS, VS, carbohydrate and protein in the recirculated TPAD system were higher than those of the non-recirculated system. The successful acclimation of thermophilic cellulose-degrading bacteria in the first reactor (RT1), partly due to recirculation, ensured the effective degradation of cellulose when the paper waste ratio was higher than 40%, resulting in the production of large amounts of hydrogen in reactor RT1. In the absence of recirculation, the main substance produced in the first reactor of the non-recirculated system (T1) was lactic acid. This gradually led to over-acidification and a low degradation efficiency and no methane or hydrogen was produced in T1. Recirculation helped to establish a stable bacterial community capable of producing bio-hydrogen in reactor RT1. The relatively low pH of 5.5 in the RT1 inhibited the activity of hydrogenotrophic archaea without consuming hydrogen, facilitating high hydrogen production levels.


Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Alimentos , Metano , Aguas del Alcantarillado , Temperatura
13.
J Med Chem ; 63(6): 3381-3389, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32081008

RESUMEN

We have synthesized and characterized [18F]-N-(4-chloro-3-((fluoromethyl-d2)thio)phenyl)-picolinamide ([18F]15) as a potential ligand for the positron emission tomography (PET) imaging of mGluR4 in the brain. Radioligand [18F]15 displays central nervous system drug-like properties, including mGluR4 affinity, potent mGluR4 PAM activity, and selectivity against other mGluRs, as well as sufficient metabolic stability. Radiosynthesis was carried out in two steps. The radiochemical yield of [18F]15 was 11.6 ± 2.9% (n = 7, decay corrected) with a purity of 99% and a molar activity of 84.1 ± 11.8 GBq/µmol. Ex vivo biodistribution studies showed reversible binding of [18F]15 in all investigated tissues including the brain, liver, heart, lungs, and kidneys. PET imaging studies in male Sprague Dawley rats showed that [18F]15 accumulates in the brain regions known to express mGluR4. Pretreatment with the unlabeled mGluR4 PAM compounds 13 (methylthio analogue) and 15 showed significant dose-dependent blocking effects. These results suggest that [18F]15 is a promising radioligand for PET imaging mGluR4 in the brain.


Asunto(s)
Picolinas/farmacología , Radiofármacos/farmacología , Receptores de Glutamato Metabotrópico/análisis , Animales , Encéfalo/metabolismo , Estabilidad de Medicamentos , Radioisótopos de Flúor/química , Ligandos , Masculino , Microsomas Hepáticos/metabolismo , Picolinas/síntesis química , Picolinas/farmacocinética , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
14.
Biochimie ; 146: 56-67, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29155108

RESUMEN

MicroRNAs (miRNAs) have been closely associated with the proliferation, invasion and migration of various cancers, including gallbladder carcinoma (GBC). Previous studies have revealed dysregulation of miR-30b and miR-340 in many types of cancer. However, the role of miR-30b and miR-340 in the development and progression of GBC remains unclear. Moreover, epithelial-to-mesenchymal transition (EMT) has been gradually viewed as a significant contributor to tumor metastasis. In this study, the cell line GBC-SD was used and we explored that EMT promoted GBC cells invasion and migration and inhibited the expression level of miR-30b and miR-340 compared with the control. We showed that overexpression of miR-30b and miR-340 suppressed GBC cells proliferation, invasion and migration, as well as the expression of EMT-associated genes. In addition, we identified ecto-5'-nucleotidase (NT5E) as a common target of miR-30b and miR-340 using bioinformatics analysis and a luciferase assay. Further experiments found that exogenous expression of NT5E in GBC cells could partially reverse the inhibitory effect of miR-30b and miR-340 on cell proliferation, invasion and migration. Our findings suggest that NT5E-targeting miRNAs (miR-30b and miR-340) function as tumor suppressors and may represent promising therapeutic targets for GBC.


Asunto(s)
5'-Nucleotidasa/genética , Movimiento Celular/genética , Neoplasias de la Vesícula Biliar/patología , MicroARNs/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Proteínas Ligadas a GPI/genética , Neoplasias de la Vesícula Biliar/genética , Humanos , Masculino , Ratones , Invasividad Neoplásica , Factor de Crecimiento Transformador beta1/farmacología
15.
ACS Nano ; 11(12): 12134-12144, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29141151

RESUMEN

Stimuli-responsive nanostructures have shown great promise for intracellular delivery of anticancer compounds. A critical challenge remains in the exploration of stimuli-responsive nanoparticles for fast cytoplasmic delivery. Herein, near-infrared (NIR) light-responsive nanoparticles were rationally designed to generate highly efficient cytoplasmic delivery of anticancer agents for synergistic thermo-chemotherapy. The drug-loaded polymeric nanoparticles of selenium-inserted copolymer (I/D-Se-NPs) were rapidly dissociated in several minutes through reactive oxygen species (ROS)-mediated selenium oxidation upon NIR light exposure, and this irreversible dissociation of I/D-Se-NPs upon such a short irradiation promoted continuous drug release. Moreover, I/D-Se-NPs facilitated cytoplasmic drug translocation through ROS-triggered lysosomal disruption and thus resulted in highly preferable distribution to the nucleus even in 5 min postirradiation, which was further integrated with light-triggered hyperthermia for achieving synergistic tumor ablation without tumor regrowth.


Asunto(s)
Antineoplásicos/química , Citoplasma/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Rayos Infrarrojos , Nanopartículas/química , Polímeros/química , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citoplasma/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Nanopartículas/metabolismo , Polímeros/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Selenio/metabolismo
16.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28295684

RESUMEN

Photoconversion tunability of fluorophore dye is of great interest in cancer nanomedicine such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, this paper reports wavelength-dependent photoconversional polymeric vesicles of boron dipyrromethene (Bodipy) fluorophore for either PDT under 660 nm irradiation or PTT under 785 nm irradiation. After being assembled within polymeric vesicles at a high drug loading, Bodipy molecules aggregate in the conformations of both J-type and H-type, thereby causing red-shifted absorption into near-infrared region, ultralow radiative transition, and ideal resistance to photobleaching. Such vesicles further possess enhanced blood circulation, preferable tumor accumulation, as well as superior cell uptake as compared to free Bodipy. In particular, the vesicles mainly generate abundant intracellular singlet oxygen for PDT treatment under 660 nm irradiation, while they primarily produce a potent hyperthermia for PTT with tumor ablation through singlet oxygen-synergized photothermal necrosis under 785 nm irradiation. This approach provides a facile and general strategy to tune photoconversion characteristics of fluorophore dyes for wavelength-dependent photoinduced cancer therapy.


Asunto(s)
Fotoblanqueo , Línea Celular Tumoral , Humanos , Hipertermia Inducida , Nanomedicina , Fotoquimioterapia
17.
Small ; 13(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27879041

RESUMEN

Smart nanoparticles are increasingly important in a variety of applications such as cancer therapy. However, it is still a major challenge to develop light-responsive nanoparticles that can maximize the potency of synergistic thermo-chemotherapy under light irradiation. Here, spatially confined cyanine-anchored silica nanochannels loaded with chemotherapeutic doxorubicin (CS-DOX-NCs) for light-driven synergistic cancer therapy are introduced. CS-DOX-NCs possess a J-type aggregation conformation of cyanine dye within the nanochannels and encapsulate doxorubicin through the π-π interaction with cyanine dye. Under near-infrared light irradiation, CS-DOX-NCs produce the enhanced photothermal conversion efficiency through the maximized nonradiative transition of J-type Cypate aggregates, trigger the light-driven drug release through the destabilization of temperature-sensitive π-π interaction, and generate the effective intracellular translocation of doxorubicin from the lysosomes to cytoplasma through reactive oxygen species-mediated lysosomal disruption, thereby causing the potent in vivo hyperthermia and intracellular trafficking of drug into cytoplasma at tumors. Moreover, CS-DOX-NCs possess good resistance to photobleaching and preferable tumor accumulation, facilitating severe photoinduced cell damage, and subsequent synergy between photothermal and chemotherapeutic therapy with tumor ablation. These findings provide new insights of light-driven nanoparticles for synergistic cancer therapy.


Asunto(s)
Doxorrubicina/uso terapéutico , Hipertermia Inducida , Indoles/química , Luz , Nanopartículas/química , Propionatos/química , Dióxido de Silicio/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Ratones , Nanopartículas/ultraestructura , Oxígeno Singlete/metabolismo , Distribución Tisular/efectos de los fármacos , Carga Tumoral/efectos de los fármacos
18.
PLoS One ; 11(12): e0167341, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27926946

RESUMEN

We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.


Asunto(s)
Caminata/fisiología , Algoritmos , Humanos
19.
Gene ; 594(1): 82-88, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27601256

RESUMEN

The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation.


Asunto(s)
Ciclina B , Metilación de ADN/fisiología , Estivación/fisiología , Regulación de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , Pepinos de Mar , Animales , Ciclina B/biosíntesis , Ciclina B/genética , Pepinos de Mar/genética , Pepinos de Mar/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27376927

RESUMEN

Marine invertebrate aestivation is a unique strategy for summer survival in response to hot marine conditions. The sea cucumber, Apostichopus japonicus, is an excellent model marine invertebrate for studies of environmentally-induced aestivation. In the present study, we used a tandem mass tag (TMT)-coupled LC-MS/MS approach to identify and quantify the global proteome expression profile over the aestivation-arousal cycle of A. japonicus. A total of 3920 proteins were identified from the intestine of sea cucumber. Among them, 630 proteins showed significant differential expression when comparing three conditions of sea cucumbers: non-aestivating (active), deep-aestivation (at least 15days of continuous aestivation), and arousal after aestivation (renewed moving and feeding). Sea cucumbers in deep aestivation showed substantial differentially expressed proteins (143 up-regulated and 267 down-regulated proteins compared with non-aestivating controls). These differentially expressed proteins suggested that protein and phospholipid probably are major fuel sources during hypometabolism and a general attenuation of carbohydrate metabolism was observed during deep aestivation. Differentially expressed proteins also provided the first global picture of a shift in protein synthesis, protein folding, DNA binding, apoptosis, cellular transport and signaling, and cytoskeletal proteins during deep aestivation in sea cucumbers. A comparison of arousal from aestivation with deep aestivation, revealed a general reversal of the changes that occurred in aestivation for most proteins. Western blot detection further validated the significant up-regulation of HSP70 and down-regulation of methyltransferase-like protein 7A-like in deep-aestivation. Our results suggest that there is substantial post-transcriptional regulation of proteins during the aestivation-arousal cycle in sea cucumbers.


Asunto(s)
Cromatografía Liquida/métodos , Estivación/fisiología , Proteoma/análisis , Proteómica/métodos , Pepinos de Mar/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Western Blotting , Biología Computacional , Pepinos de Mar/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...