Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10658, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724553

RESUMEN

This study aimed to investigate the effects of exercise on excessive mitochondrial fission, insulin resistance, and inflammation in the muscles of diabetic rats. The role of the irisin/AMPK pathway in regulating exercise effects was also determined. Thirty-two 8-week-old male Wistar rats were randomly divided into four groups (n = 8 per group): one control group (Con) and three experimental groups. Type 2 diabetes mellitus (T2DM) was induced in the experimental groups via a high-fat diet followed by a single intraperitoneal injection of streptozotocin (STZ) at a dosage of 30 mg/kg body weight. After T2DM induction, groups were assigned as sedentary (DM), subjected to 8 weeks of treadmill exercise training (Ex), or exercise training combined with 8-week cycloRGDyk treatment (ExRg). Upon completion of the last training session, all rats were euthanized and samples of fasting blood and soleus muscle were collected for analysis using ELISA, immunofluorescence, RT-qPCR, and Western blotting. Statistical differences between groups were analyzed using one-way ANOVA, and differences between two groups were assessed using t-tests. Our findings demonstrate that exercise training markedly ameliorated hyperglycaemia, hyperlipidaemia, and insulin resistance in diabetic rats (p < 0.05). It also mitigated the disarranged morphology and inflammation of skeletal muscle associated with T2DM (p < 0.05). Crucially, exercise training suppressed muscular excessive mitochondrial fission in the soleus muscle of diabetic rats (p < 0.05), and enhanced irisin and p-AMPK levels significantly (p < 0.05). However, exercise-induced irisin and p-AMPK expression were inhibited by cycloRGDyk treatment (p < 0.05). Furthermore, the administration of CycloRGDyk blocked the effects of exercise training in reducing excessive mitochondrial fission and inflammation in the soleus muscle of diabetic rats, as well as the positive effects of exercise training on improving hyperlipidemia and insulin sensitivity in diabetic rats (p < 0.05). These results indicate that regular exercise training effectively ameliorates insulin resistance and glucolipid metabolic dysfunction, and reduces inflammation in skeletal muscle. These benefits are partially mediated by reductions in mitochondrial fission through the irisin/AMPK signalling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Fibronectinas , Inflamación , Resistencia a la Insulina , Dinámicas Mitocondriales , Músculo Esquelético , Condicionamiento Físico Animal , Ratas Wistar , Animales , Fibronectinas/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Ratas , Músculo Esquelético/metabolismo , Inflamación/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Transducción de Señal , Estreptozocina
2.
J Diabetes ; 16(1): e13475, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721125

RESUMEN

PURPOSE: Though exercise generates beneficial effects on diabetes-associated cardiac damage, the underlying mechanism is largely unclear. Therefore, we prescribed a program of 8-week treadmill training for type 2 diabetes mellitus (T2DM) rats and determined the role of irisin signaling, via interacting with AMP-activated protein kinase (AMPK), in mediating the effects of exercise on myocardial injuries and mitochondrial fission. METHODS: Forty 8-week-old male Wistar rats were randomly divided into groups of control (Con), diabetes mellitus (DM), diabetes plus exercise (Ex), and diabetes plus exercise and Cyclo RGDyk (ExRg). Ex and ExRg rats received 8 weeks of treadmill running, and the rats in the ExRg group additionally were treated with a twice weekly injection of Cyclo RGDyk, an irisin receptor-αV/ß5 antagonist. At the end of the experiment, murine blood samples and heart tissues were collected and analyzed with methods of ELISA, Western blot, real-time quantitative polymerase chain reaction, as well as immunofluorescence staining. RESULTS: Exercise effectively mitigated T2DM-related hyperglycemia, hyperinsulinemia, lipid dysmetabolism, and inflammation, which could be diminished by Cyclo RGDyk treatment. Additionally, exercise alleviated T2DM-induced myocardial injury and excessive mitochondrial fission, whereas the beneficial effects were blocked by the administration of Cyclo RGDyk. T2DM significantly decreased serum irisin concentrations and fibronectin type III domain-containing protein 5 (FNDC5)/irisin gene and protein expression levels in the rat heart, whereas exercise could rescue T2DM-reduced FNDC5/irisin expression. Blocking irisin receptor signaling diminished the exercise-alleviated mitochondrial fission protein expression and elevated AMPK phosphorylation. CONCLUSION: Exercise is effective in mitigating diabetes-related insulin resistance, metabolic dysfunction, and inflammation. Irisin signaling engages in exercise-associated beneficial effects on myocardial injury and excessive mitochondrial fission in diabetes rats involving elevated AMPK phosphorylation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacología , Fosforilación , Dinámicas Mitocondriales , Diabetes Mellitus Experimental/complicaciones , Ratas Wistar , Inflamación
3.
Endocr Relat Cancer ; 30(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36606578

RESUMEN

Lymphatic metastasis is the leading cause responsible for recurrence and progression in papillary thyroid cancer (PTC), where dysregulation of long non-coding RNAs (lncRNAs) has been extensively demonstrated to be implicated. However, the specific lymphatic node metastatsis-related lncRNAs remain not identified in PTC yet. Lymphatic node metastatsis-related lncRNA, MFSD4A-AS1, was explored in the PTC dataset from The Cancer Genome Atlas and our clinical samples. The roles of MFSD4A-AS1 in lymphatic metastasis were investigated in vitro and in vivo. Bioinformatic analysis, luciferase assay and RNA immunoprecipitation assay were performed to identify the potential targets and the underlying pathway of MFSD4A-AS1 in lymphatic metastasis of PTC. MFSD4A-AS1 was specifically upregulated in PTC tissues with lymphatic metastasis. Upregulating MFSD4A-AS1 promoted mesh formation and migration of human umbilical vein endothelial cells and invasion and migration of PTC cells. Importantly and consistently, MFSD4A-AS1 promoted lymphatic metastasis of PTC cells in vivo by inducing the lymphangiogenic formation and enhancing the invasive capability of PTC cells. Mechanistic dissection further revealed that MFSD4A-AS1 functioned as competing endogenous RNA to sequester miR-30c-2-3p, miR-145-3p and miR-139-5p to disrupt the miRNA-mediated inhibition of vascular endothelial growth factors A and C, and further activated transforming growth factor (TGF)-ß signaling by sponging miR-30c-2-3p that targeted TGFBR2 and USP15, both of which synergistically promoted lymphangiogenesis and lymphatic metastasis of PTC. Our results unravel novel dual mechanisms by which MFSD4A-AS1 promotes lymphatic metastasis of PTC, which will facilitate the development of anti-lymphatic metastatic therapeutic strategy in PTC.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Linfangiogénesis , Metástasis Linfática , MicroARNs/genética , ARN Largo no Codificante/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
4.
J Cardiovasc Transl Res ; 16(2): 430-442, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36036861

RESUMEN

Exercise has been recognized as an important non-pharmacological approach for the prevention, treatment, and rehabilitation of cardiovascular diseases, but the mechanisms of exercise in promoting cardiovascular health remain unclear. Exercise generates cardiac benefits via stimulating muscle to secret hundreds of myokines that directly enter circulation and target heart tissue. Therefore, inter-organ communication between skeletal muscle and heart may be one important regulating pattern, and such communication can occur through secretion of molecules, frequently known as myokines. Irisin, a newly identified myokine, is cleaved from fibronectin type III domain-containing protein 5 (FNDC5) and secreted by the stimulation of exercise. Recently, accumulating evidence focusing on the interaction between irisin and cardiac function has been reported. This review highlights the molecular signaling by which irisin regulates the benefits of exercise on cardiac function both in physiological and pathological process, and discusses the clinical potential of irisin in treating heart diseases. Exercise generates various cardiovascular benefits through stimulating skeletal muscle to secrete irisin. The exercise "hormone" irisin, both produced by exercise or recombinant form, exerts therapeutic effects in a group of cardiovascular disorders including heart failure, myocardial infarction, atherosclerosis and hypertension. However, the molecular mechanisms involved remain ambiguous.This review highlights the most up-to-date findings to bridge the gap between exercise, irisin and cardiovascular diseases, and discusses the potential clinical prospect of irisin.


Asunto(s)
Fibronectinas , Infarto del Miocardio , Humanos , Fibronectinas/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético , Factores de Transcripción/metabolismo , Infarto del Miocardio/metabolismo
5.
Nutrients ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35215425

RESUMEN

The associations between sugar-sweetened beverage (SSB) consumption and the risk of stroke, depression, cancer, and cause-specific mortality have not been determined, and the quantitative aspects of this link remain unclear. This meta-analysis therefore conducted a systematic review and dose-response analysis to determine their causal links. The database searches were conducted in PubMed, Cochrane library, Embase, Web of Science up to 10 November 2021. The intervention effects were evaluated by relative risk (RR) with 95% confidences (CI). Thirty-two articles met the inclusion criteria. Higher levels of SSB consumption significantly increased the risk of stroke (RR 1.12, 95% CI 1.03-1.23), depression (1.25, 1.11-1.41), cancer (1.10, 1.03-1.17), and all-cause mortality (1.08, 1.05-1.11) compared with none or lower SSB intake. The associations were dose-dependent, with per 250 mL increment of SSB intake daily increasing the risk of stroke, depression, cancer, and all-cause mortality by RR 1.09 (1.03-1.15), 1.08 (1.06-1.10), 1.17 (1.04-1.32), and 1.07 (1.03-1.11), respectively. The link was curved for depression and cancer risk (pnon-linear < 0.05). Subgroup analysis suggested that higher SSB intake increased ischemic stroke by 10%, CVD-caused mortality by 13%, and cancer-caused mortality by 6.0% than none or lower SSB consumption. It is suggested that SSB accounts for a leading risk factor of stroke, depression, cancer, and mortality, and that the risk rises in parallel with the increment of SSB intake (and is affected by participant characteristics).


Asunto(s)
Neoplasias , Accidente Cerebrovascular , Bebidas Azucaradas , Bebidas/análisis , Causas de Muerte , Depresión , Humanos , Neoplasias/etiología , Estudios Prospectivos , Factores de Riesgo , Accidente Cerebrovascular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA