Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2306594, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751152

RESUMEN

Iron single-atom catalysts (SACs) have garnered increasing attention as highly efficient catalysts for the oxygen reduction reaction (ORR), yet their performance in practical devices remains suboptimal due to the low density of accessible active sites. Anchoring iron single atoms on 2D support is a promising way to increase the accessible active sites but remains difficult attributing to the high aggregation tendency of iron atoms on the 2D support. Herein, a vacuum vapor deposition strategy is presented to fabricate an iron SAC supported on ultrathin N-doped carbon nanosheets with densely active sites (FeSAs-UNCNS). Experimental analyses confirm that the FeSAs-UNCNS achieves densely accessible active sites (1.11 × 1020 sites g-1) in the configuration of Fe─N4O. Consequently, the half-wave potential of FeSAs-UNCNS in 0.1 m KOH reaches a remarkable value of 0.951 V versus RHE. Moreover, when employed as the cathode of various kinds of Zn-air batteries, FeSAs-UNCNS exhibits boosting performances by achieving a maximum power density of 306 mW cm-2 and long cycle life (>180 h) at room temperature, surpassing both Pt/C and reported SACs. Further investigations reveal that FeSAs-UNCNS facilitates the mass and charge transfer during catalysis and the atomic configuration favors the desorption of *OH kinetically.

2.
J Biol Chem ; 300(5): 107205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519032

RESUMEN

Major histocompatibility complex (MHC) class I molecules play an essential role in regulating the adaptive immune system by presenting antigens to CD8 T cells. CITA (MHC class I transactivator), also known as NLRC5 (NLR family, CARD domain-containing 5), regulates the expression of MHC class I and essential components involved in the MHC class I antigen presentation pathway. While the critical role of the nuclear distribution of NLRC5 in its transactivation activity has been known, the regulatory mechanism to determine the nuclear localization of NLRC5 remains poorly understood. In this study, a comprehensive analysis of all domains in NLRC5 revealed that the regulatory mechanisms for nuclear import and export of NLRC5 coexist and counterbalance each other. Moreover, GCN5 (general control non-repressed 5 protein), a member of HATs (histone acetyltransferases), was found to be a key player to retain NLRC5 in the nucleus, thereby contributing to the expression of MHC class I. Therefore, the balance between import and export of NLRC5 has emerged as an additional regulatory mechanism for MHC class I transactivation, which would be a potential therapeutic target for the treatment of cancer and virus-infected diseases.


Asunto(s)
Transporte Activo de Núcleo Celular , Antígenos de Histocompatibilidad Clase I , Péptidos y Proteínas de Señalización Intracelular , Activación Transcripcional , Humanos , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genética
3.
Bioessays ; 46(4): e2300109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461519

RESUMEN

Antigen presentation to CD8+ T cells by MHC class I molecules is essential for host defense against viral infections. Various mechanisms have evolved in multiple viruses to escape immune surveillance and defense to support viral proliferation in host cells. Through in vitro SARS-CoV-2 infection studies and analysis of COVID-19 patient samples, we found that SARS-CoV-2 suppresses the induction of the MHC class I pathway by inhibiting the expression and function of NLRC5, a major transcriptional regulator of MHC class I genes. In this review, we discuss the molecular mechanisms for suppression of the MHC class I pathway and clinical implications for COVID-19.


Asunto(s)
COVID-19 , Genes MHC Clase I , Humanos , Transactivadores/genética , SARS-CoV-2/genética , COVID-19/genética , Antígenos de Histocompatibilidad Clase I , Péptidos y Proteínas de Señalización Intracelular/genética
5.
Nat Commun ; 12(1): 6602, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782627

RESUMEN

The MHC class I-mediated antigen presentation pathway plays a critical role in antiviral immunity. Here we show that the MHC class I pathway is targeted by SARS-CoV-2. Analysis of the gene expression profile from COVID-19 patients as well as SARS-CoV-2 infected epithelial cell lines reveals that the induction of the MHC class I pathway is inhibited by SARS-CoV-2 infection. We show that NLRC5, an MHC class I transactivator, is suppressed both transcriptionally and functionally by the SARS-CoV-2 ORF6 protein, providing a mechanistic link. SARS-CoV-2 ORF6 hampers type II interferon-mediated STAT1 signaling, resulting in diminished upregulation of NLRC5 and IRF1 gene expression. Moreover, SARS-CoV-2 ORF6 inhibits NLRC5 function via blocking karyopherin complex-dependent nuclear import of NLRC5. Collectively, our study uncovers an immune evasion mechanism of SARS-CoV-2 that targets the function of key MHC class I transcriptional regulators, STAT1-IRF1-NLRC5.


Asunto(s)
COVID-19/inmunología , Genes MHC Clase I/inmunología , Factor 1 Regulador del Interferón/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , SARS-CoV-2/genética , Factor de Transcripción STAT1/antagonistas & inhibidores , Proteínas Virales/metabolismo , COVID-19/genética , COVID-19/patología , COVID-19/virología , Línea Celular , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Transducción de Señal , Proteínas Virales/inmunología
6.
Exp Mol Med ; 53(5): 723-736, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953325

RESUMEN

The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses.


Asunto(s)
Coronaviridae/inmunología , Infecciones por Coronavirus/inmunología , Evasión Inmune , Inmunidad Innata , Animales , COVID-19/inmunología , Humanos , Interferones/inmunología , SARS-CoV-2/inmunología
7.
Materials (Basel) ; 14(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567539

RESUMEN

Channel segregation (CS) is the most typical defect during solidification of NbTi alloy. Based on numerical simulation and experimental characterizations, we deeply elucidated its characteristics, formation mechanism, effecting factor and prediction criterion. According to acid etching, industrial X-ray transmission imaging, 3D X-ray microtomography and chemical analysis, it was found that in a casing ingot, by He cooling, finer grain size, weaker segregation and slighter CS can be obtained compared with air-cooled ingot. The simulation results of macrosegregation show that CS is caused by the strong natural convection in the mushy zone triggered by the thermo-solutal gradient. Its formation can be divided into two stages including channel initiation and growth. In addition, due to the stronger cooling effect of the He treatment, the interdendritic flow velocity becomes smaller, consequently lowering the positive segregation and CS and improving the global homogenization of the final ingot. Finally, to predict the formation of CS, the Rayleigh number model was proposed and its critical value was found to be 15 in NbTi alloy for the first time. When it is lower than the threshold, CS disappears. It provides an effective tool to evaluate and optimize the solidification parameters to fabricate the homogenized NbTi ingot in engineering practice.

8.
Nucleic Acids Res ; 47(15): 8239-8254, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31216022

RESUMEN

XAB2 is a multi-functional protein participating processes including transcription, splicing, DNA repair and mRNA export. Here, we report POLR2A, the largest catalytic subunit of RNA polymerase II, as a major target gene down-regulated after XAB2 depletion. XAB2 depletion led to severe splicing defects of POLR2A with significant intron retention. Such defects resulted in substantial loss of POLR2A at RNA and protein levels, which further impaired global transcription. Treatment of splicing inhibitor madrasin induced similar reduction of POLR2A. Screen using TMT-based quantitative proteomics identified several proteins involved in mRNA surveillance including Dom34 with elevated expression. Inhibition of translation or depletion of Dom34 rescued the expression of POLR2A by stabilizing its mRNA. Immuno-precipitation further confirmed that XAB2 associated with spliceosome components important to POLR2A expression. Domain mapping revealed that TPR motifs 2-4 and 11 of XAB2 were critical for POLR2A expression by interacting with SNW1. Finally, we showed POLR2A mediated cell senescence caused by XAB2 deficiency. Depletion of XAB2 or POLR2A induced cell senescence by up-regulation of p53 and p21, re-expression of POLR2A after XAB2 depletion alleviated cellular senescence. These data together support that XAB2 serves as a guardian of POLR2A expression to ensure global gene expression and antagonize cell senescence.


Asunto(s)
Senescencia Celular/genética , ARN Polimerasas Dirigidas por ADN/genética , Intrones/genética , Factores de Transcripción/genética , Transcripción Genética , Línea Celular , Línea Celular Tumoral , ARN Polimerasas Dirigidas por ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferencia de ARN , Empalme del ARN , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
RNA Biol ; 16(8): 1001-1009, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31107149

RESUMEN

In contrast to cytoplasmic localization of spliced mRNAs, many spliced lncRNAs are localized in the nucleus. To investigate the mechanism, we used lncRNA MEG3 as a reporter and mapped a potent nuclear retention element (NRE), deletion of this element led to striking export of MEG3 from the nucleus to the cytoplasm. Insertion of the NRE resulted in nuclear retention of spliced lncRNA as well as spliced mRNA. We further purified RNP assembled on the NRE in vitro and identified the proteins by mass spectrometry. Screen using siRNA revealed depletion of U1 snRNP components SNRPA, SNRNP70 or SNRPD2 caused significant cytoplasmic localization of MEG3 reporter transcripts. Co-knockdown these factors in HFF1 cells resulted in an increased cytoplasmic distribution of endogenous lncRNAs. Together, these data support a model that U1 snRNP components restrain spliced lncRNAs in the nucleus via the interaction with nuclear retention element.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/genética , Proteínas Nucleares snRNP/genética , Núcleo Celular/genética , Citoplasma/genética , Citosol/metabolismo , Células HeLa , Humanos , Empalme del ARN/genética , ARN Largo no Codificante/genética , Ribonucleoproteína Nuclear Pequeña U1/química , Empalmosomas/genética
10.
Analyst ; 144(2): 474-480, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30426976

RESUMEN

To eliminate mercury contamination in aqueous environment, chitosan-gold nanocomposite and its functionalized paper strips were designed and developed for visual sensing and removal of trace Hg2+. By simply immersing a common filter paper into the resultant composite dispersion, gold nanochromophores could be well dispersed with minor aggregation by virtue of the dual supporting roles of the chitosan and the filter paper. Under optimized conditions, the colour of both the chitosan-gold nanocomposite and its functionalized paper strips could change from dark red to yellow upon addition of Hg2+, with a detection limit of 3.2 × 10-9 mol L-1 and 5.0 × 10-8 mol L-1, respectively. Importantly, the chitosan-gold nanocomposite was non-toxic and could be utilized repeatedly for sensing trace Hg2+ in both environmental aqueous solutions and some fruit or vegetable juice samples, with satisfactory results. Furthermore, using the resulting functionalized filter-paper, more than 93.5% Hg2+ in aqueous solution with an initial concentration as high as 1.0 × 10-5 mol L-1 could be enriched and separated by a simple filtration process. The proposed operating mechanism is based on the reversible gold amalgam formation between the gold nanoparticles and Hg2+. This study will be the first report for paper-based sensing to visually detect, enrich and remove Hg2+ with minimal secondary pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...