Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(36): e2403040121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190354

RESUMEN

ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Luz , Fosforilación , Hipocótilo/metabolismo , Hipocótilo/crecimiento & desarrollo , Temperatura , Morfogénesis
2.
New Phytol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155750

RESUMEN

Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.

3.
Plant Physiol ; 195(2): 1005-1024, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38431528

RESUMEN

Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.


Asunto(s)
Ácido Abscísico , Sequías , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Resistencia a la Sequía
4.
Mol Plant ; 17(4): 598-613, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341757

RESUMEN

Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Solanum lycopersicum/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Plant Cell Environ ; 47(4): 1334-1347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221812

RESUMEN

Cold stress is a major meteorological threat to crop growth and yield. Abscisic acid (ABA) plays important roles in plant cold tolerance by activating the expression of cold-responsive genes; however, the underlying transcriptional regulatory module remains unknown. Here, we demonstrated that the cold- and ABA-responsive transcription factor ETHYLENE RESPONSE FACTOR 15 (ERF15) positively regulates ABA-mediated cold tolerance in tomato. Exogenous ABA treatment significantly enhanced cold tolerance in wild-type tomato plants but failed to rescue erf15 mutants from cold stress. Transcriptome analysis showed that ERF15 was associated with the expression of cold-responsive transcription factors such as CBF1 and WRKY6. Further RT-qPCR assays confirmed that the ABA-induced increased in CBF1 and WRKY6 transcripts was suppressed in erf15 mutants when the plants were subjected to cold treatment. Moreover, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays demonstrated that ERF15 activated the transcription of CBF1 and WRKY6 by binding their promoters. Silencing CBF1 or WRKY6 significantly decreased cold tolerance. Overall, our study identified the role of ERF15 in conferring ABA-mediated cold tolerance in tomato plants by activating CBF1 and WRKY6 expression. This study not only broadens our knowledge of the mechanism of ABA-mediated cold tolerance in plants but also highlights ERF15 as an ideal target gene for cold-tolerant crop breeding.


Asunto(s)
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Etilenos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frío , Plantas Modificadas Genéticamente/metabolismo
6.
Food Funct ; 14(22): 10177-10187, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37902310

RESUMEN

Carotenoids in tomatoes confer significant health benefits to humans but with the disadvantage of the carotenoids from raw tomatoes not being easily absorbed for utilization. Thus, this study aimed to investigate the effects of different cooking processes on carotenoid release and human gut microbiota composition during in vitro simulated gastrointestinal digestion of tomatoes. The results showed that stir-frying significantly increased the release of lycopene and ß-carotene during gastrointestinal digestion, with boiling being the second most effective treatment. The boiling-treated tomatoes enhanced the carotenoid release during in vitro fermentation. Gut microbiota analysis revealed that the digestion of the raw and boiled tomatoes promoted the growth of potentially beneficial microbiota while reducing the ratio of Firmicutes/Bacteroides, which potentially helps prevent obesity. Boiling treatment significantly reduced the growth of Peptostreptococcus and was negatively correlated with carotenoid release. Overall, the boiling-treated tomatoes were more effective than the raw or stir-fried tomatoes in terms of both colon health benefits and carotenoid release.


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Fermentación , Carotenoides/metabolismo , Digestión
7.
Food Res Int ; 170: 112968, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316011

RESUMEN

In this study, the presence of phenolic compounds derived from four Solanaceae fruits (tomato, pepino, tamarillo, and goldenberry) during gastrointestinal digestion and the effect of these compounds on human gut microbiota was investigated. The results indicated that the total phenolic content of all Solanaceae fruits were increased during digestion. Furthermore, the targeted metabolic analysis identified 296 compounds, of which 71 were changed after gastrointestinal digestion in all Solanaceae fruits. Among these changed phenolic compounds, 51.3% phenolic acids and 91% flavonoids presented higher bioaccessibility in pepino and tamarillo, respectively. Moreover, higher levels of glycoside-formed phenolic acids, including dihydroferulic acid glucoside and coumaric acid glucoside, were found in tomato fruits. In addition, tachioside showed the highest bioaccessibility in goldenberry fruits. The intake of Solanaceae fruits during the in vitro fermentation decreased the Firmicutes/Bacteroidetes ratio (F/B) compared with the control (∼15-fold change on average), and goldenberry fruits showed the best effect (F/B = 2.1). Furthermore, tamarillo significantly promoted the growth of Bifidobacterium and short-chain fatty acids production. Overall, this study revealed that Solanaceae fruits had different phenolic compound profiles and health-promoting effects on the gut microbiota. It also provided relevant information to improve the consumption of Solanaceae fruits, mainly tamarillo and goldenberry fruits, due to their gut health-promoting properties, as functional foods.


Asunto(s)
Physalis , Solanum lycopersicum , Solanum , Humanos , Frutas , Fenoles , Bacteroidetes , Firmicutes
8.
Proc Natl Acad Sci U S A ; 120(16): e2301879120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036969

RESUMEN

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Brotes de la Planta , Factores de Transcripción/metabolismo , Citocininas/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant Physiol ; 192(3): 2507-2522, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946197

RESUMEN

Phytosulfokine (PSK) is a danger-associated molecular pattern recognized by PHYTOSULFOKINE RECEPTOR 1 (PSKR1) and initiates intercellular signaling to coordinate different physiological processes, especially in the defense response to the necrotrophic fungus Botrytis cinerea. The activity of peptide receptors is largely influenced by different posttranslational modifications, which determine intercellular peptide signal outputs. To date, the posttranslational modification to PHYTOSULFOKINE RECEPTOR 1 (PSKR1) remains largely unknown. Here, we show that tomato (Solanum lycopersicum) PSKR1 is regulated by the ubiquitin/proteasome degradation pathway. Using multiple protein-protein interactions and ubiquitylation analyses, we identified that plant U-box E3 ligases PUB12 and PUB13 interacted with PSKR1, among which PUB13 caused PSKR1 ubiquitylation at Lys-748 and Lys-905 sites to control PSKR1 abundance. However, this posttranslational modification was attenuated upon addition of PSK. Moreover, the disease symptoms observed in PUB13 knock-down and overexpression lines demonstrated that PUB13 significantly suppressed the PSK-initiated defense response. This highlights an important regulatory function for the turnover of a peptide receptor by E3 ligase-mediated ubiquitylation in the plant defense response.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Plantas , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal/fisiología , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838788

RESUMEN

Physiological and metabolic profiles in tamarillo were investigated to reveal the molecular changes during fruit maturation. The firmness, ethylene production, soluble sugar contents, and metabolomic analysis were determined in tamarillo fruit at different maturity stages. The firmness of tamarillo fruit gradually decreased during fruit ripening with increasing fructose and glucose accumulation. The rapid increase in ethylene production was found in mature fruit. Based on the untargeted metabolomic analysis, we found that amino acids, phospholipids, monosaccharides, and vitamin-related metabolites were identified as being changed during ripening. The contents of malic acid and citric acid were significantly decreased in mature fruits. Metabolites involved in phenylpropanoid biosynthesis, phenylalanine metabolism, caffeine metabolism, monoterpenoid biosynthesis, and thiamine metabolism pathways showed high abundance in mature fruits. However, we also found that most of the mature-enhanced metabolites showed reduced abundance in over-mature fruits. These results reveal the molecular profiles during tamarillo fruit maturing and suggest tamarillos have potential benefits with high nutrition and health function.


Asunto(s)
Solanum , Solanum/química , Frutas/química , Etilenos/metabolismo , Metabolómica
11.
New Phytol ; 236(5): 1796-1808, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36052744

RESUMEN

Herbivory severely affects plant growth, posing a threat to crop production. Calcium ion (Ca2+ ) signaling and accumulation of jasmonates (JAs) are activated in plant response to herbivore attack, leading to the expression of defense pathways. However, little is known about how the Ca2+ signal modulates JA biosynthesis. We used diverse techniques, including CRISPR/Cas9, UPLC-MS/MS and molecular biology methods to explore the role of ETHYLENE RESPONSE FACTOR 16 in Ca2+ signal-triggered JA burst during herbivore defense in tomato. Here we show that simulated herbivory induces GLUTAMATE RECEPTOR LIKE3.3/3.5 (GLR3.3/3.5)-dependent increases in electrical activity, Ca2+ influx and increases the abundance of CALMODULIN2 (CaM2) and ERF16 transcripts in tomato. The interaction between CaM2 and ERF16 promotes JA biosynthesis by enhancing the transcriptional activity of ERF16, which increases the activation of ERF16 expression and causes expression of LIPOXYGENASE D (LOXD), AOC and 12-OXO-PHYTODIENOIC ACID REDUCTASE 3 (OPR3), the key genes in JA biosynthesis. Mutation of CaM2 results in decreased JA accumulation, together with the expression of JA biosynthesis-related genes, leading to reduced resistance to the cotton bollworm Helicoverpa armigera. These findings reveal a molecular mechanism underpinning the Ca2+ signal-initiated systemic JA burst and emphasize the pivotal role of Ca2+ signal/ERF16 crosstalk in herbivore defense.


Asunto(s)
Mariposas Nocturnas , Solanum lycopersicum , Animales , Herbivoria/fisiología , Solanum lycopersicum/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Plants (Basel) ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35567173

RESUMEN

Due to global warming, high-temperature stress has become a major threat to plant growth and development, which causes a severe challenge to food security worldwide. Therefore, it is necessary to explore the plant bioactive molecules, which could be a promising approach to strengthening plant thermotolerance. Rosmarinic acid (RA) serves as a plant-derived phenolic compound and has beneficial and health-promoting effects for human beings. However, the involvement of RA in plant stress response and the underlying molecular mechanism was largely unknown. In this study, we found that exogenous RA application conferred improved thermotolerance in tomatoes. The transcript abundance and the enzyme activity of enzymatic antioxidants, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and dehydroascorbate reductase (DHAR), were further promoted by RA treatment in tomato plants subjected to high-temperature stress. Moreover, RA activated the antioxidant system and modulated the cellular redox homeostasis also associated with the redox status of nonenzymatic glutathione and ascorbic acid. The results of RNA-seq data showed that transcriptional regulation was involved in RA-mediated thermotolerance. Consistently, the gene expression of several high temperature-responsive transcription factors like HsfA2, and WRKY family genes were substantially induced by RA treatment, which potentially contributed to the induction of heat shock proteins (HSPs). Overall, these findings not only gave a direct link between RA and plant thermotolerance but also provided an attractive approach to protecting crop plants from high-temperature damage in a global warming future.

13.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4991-5003, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33780343

RESUMEN

Most of the recent image segmentation methods have tried to achieve the utmost segmentation results using large-scale pixel-level annotated data sets. However, obtaining these pixel-level annotated training data is usually tedious and expensive. In this work, we address the task of semisupervised semantic segmentation, which reduces the need for large numbers of pixel-level annotated images. We propose a method for semisupervised semantic segmentation by improving the confidence of the predicted class probability map via two parts. First, we build an adversarial framework that regards the segmentation network as the generator and uses a fully convolutional network as the discriminator. The adversarial learning makes the prediction class probability closer to 1. Second, the information entropy of the predicted class probability map is computed to represent the unpredictability of the segmentation prediction. Then, we infer the label-error map of the segmentation prediction and minimize the uncertainty on misclassified regions for unlabeled images. In contrast to existing semisupervised and weakly supervised semantic segmentation methods, the proposed method results in more confident predictions by focusing on the misclassified regions, especially the boundary regions. Our experimental results on the PASCAL VOC 2012 and PASCAL-CONTEXT data sets show that the proposed method achieves competitive segmentation performance.

14.
Antioxidants (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34829692

RESUMEN

Fruits are excellent sources of essential vitamins and health-boosting minerals. Recently, regulation of fruit ripening by both internal and external cues for the improvement of fruit quality and shelf life has received considerable attention. Rosmarinic acid (RA) is a kind of natural plant-derived polyphenol, widely used in the drug therapy and food industry due to its distinct physiological functions. However, the role of RA in plant growth and development, especially at the postharvest period of fruits, remains largely unknown. Here, we demonstrated that postharvest RA treatment delayed the ripening in tomato fruits. Exogenous application of RA decreased ripening-associated ethylene production and inhibited the fruit color change from green to red based on the decline in lycopene accumulation. We also found that the degradation of sucrose and malic acid during ripening was significantly suppressed in RA-treated tomato fruits. The results of metabolite profiling showed that RA application promoted the accumulation of multiple amino acids in tomato fruits, such as aspartic acid, serine, tyrosine, and proline. Meanwhile, RA application also strengthened the antioxidant system by increasing both the activity of antioxidant enzymes and the contents of reduced forms of antioxidants. These findings not only unveiled a novel function of RA in fruit ripening, but also indicated an attractive strategy to manage and improve shelf life, flavor, and sensory evolution of tomato fruits.

15.
Opt Lett ; 46(8): 1955-1958, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857115

RESUMEN

Absolute phase unwrapping in the phase-shifting profilometry (PSP) is significant for dynamic 3-D measurements over a large depth range. Among traditional phase unwrapping methods, spatial phase unwrapping can only retrieve a relative phase map, and temporal phase unwrapping requires auxiliary projection sequences. We propose a shading-based absolute phase unwrapping (SAPU) framework for in situ 3-D measurements without additional projection patterns. First, the wrapped phase map is calculated from three captured images. Then, the continuous relative phase map is obtained using the phase histogram check (PHC), from which the absolute phase map candidates are derived with different fringe orders. Finally, the correct absolute phase map candidate can be determined without additional patterns or spatial references by applying the shading matching check (SMC). The experimental results demonstrate the validity of the proposed method.

16.
Lipids Health Dis ; 19(1): 244, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228692

RESUMEN

BACKGROUND AND OBJECTIVES: To explore the relationship between dietary patterns, physical activity and lipid-related indices in Chinese Population. METHODS AND STUDY DESIGN: This study included 21,472 (72.3% men) participants aged 16 to 78 years. Data of anthropometric measurements, biochemical tests and questionnaires were collected through a physical examination. Diet patterns were identified through factor analysis and five patterns were retained ("meat," "high-energy," "high-protein," "healthy" and "traditional Chinese"). Physical activity was classified into low, moderate, or high. Abnormalities in lipid indices were assessed using the Adult Treatment Panel III criterion. RESULTS: Higher factor scores of "high-protein" pattern and "healthy" pattern were found to be related to favorable lipid indices. Quartiles 3 and 4 of "meat" pattern showed increased risks of having elevates total cholesterol and low-density lipoprotein cholesterol concentrations. Participants with higher levels of physical activity showed lowest risk of abnormal lipid profiles. All the associations were equally established among men, while most were no longer significant among women. CONCLUSIONS: Higher physical activity level and a dietary pattern consists of high-quality protein foods, vegetables and fruits were associated with favorable lipid profiles, and these lifestyle factors were related to the risk of dyslipidemia in a sex-specific way.


Asunto(s)
Dieta , Dislipidemias/sangre , Dislipidemias/epidemiología , Lípidos/sangre , Adolescente , Adulto , Anciano , Antropometría , China/epidemiología , China/etnología , Enfermedad Crónica , Estudios Transversales , Progresión de la Enfermedad , Dislipidemias/etnología , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Estudios Retrospectivos , Factores Sexuales , Clase Social , Encuestas y Cuestionarios , Adulto Joven
17.
Asia Pac J Clin Nutr ; 29(3): 628-637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32990624

RESUMEN

BACKGROUND AND OBJECTIVES: To examine the association of dietary diversity and physical activity with lipidrelated indices in a Beijing population. METHODS AND STUDY DESIGN: This cross-sectional study included 21,472 participants (72.3% men) aged 16 to 78 years. Data were obtained through a physical examination that included anthropometric measurements, biochemical tests, and questionnaires. The dietary diversity score (0-8) was calculated according to the baseline consumption frequencies of eight food groups (cereals, fruits, vegetables, meat, eggs, fish, dairy, and legumes). Physical activity level was classified as low, moderate, or high according to International Physical Activity Questionnaire scoring protocol. Abnormalities in lipid-related indices were assessed using the criteria of the National Cholesterol Education Program Adult Treatment Panel III guidelines. RESULTS: Compared with individuals with poor dietary diversity (score 0-5), higher dietary diversity was associated with lower risk of abnormal levels of triglycerides and high-density lipoprotein cholesterol. Dairy intake was associated with a lower risk of having a high triglyceride-to-high-density lipoprotein cholesterol ratio after adjusting for potential covariates. Participants with the lowest risk of abnormal lipid profiles were those who had high levels of physical activity. CONCLUSIONS: Dietary diversity and physical activity level were associated with lipid-related indices. Therefore, to maintain healthy lipid profiles in the general population, improving dietary diversity and physical activity is essential.


Asunto(s)
HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta , Dislipidemias/prevención & control , Ejercicio Físico/fisiología , Conducta Alimentaria/fisiología , Triglicéridos/sangre , Adulto , Beijing , Colesterol/sangre , Dislipidemias/sangre , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Conducta Sedentaria
18.
Opt Express ; 28(18): 26076-26090, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906884

RESUMEN

In a typical digital fringe projection (DFP) system, the shadows in the fringe images cause errors in the phase map. We propose a novel discriminative repair approach to remove the shadow-induced error in the phase map. The proposed approach first classifies the shadow area in the phase map obtained by the DFP into two categories: valid shadow area and invalid shadow area. Then the valid shadow area is repaired by a proposed neighboring information fusion phase estimation (NIFPE) method, which fuses the phase gradient into the result of kernel density estimation (KDE) through the Kalman filter (KF) algorithm. The invalid shadow area is repaired by a proposed background phase matching (BPM) method. The experimental results demonstrate that the shadow-induced error in the phase map can be removed, which verifies the effectiveness of the proposed approach.

19.
Opt Express ; 28(10): 14319-14332, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403473

RESUMEN

Pixel-by-pixel phase unwrapping (PPU) has been employed to rapidly achieve three-dimensional (3-D) shape measurement without additional projection patterns. However, the maximum measurement depth range that traditional PPU can handle is within 2π in phase domain; thus PPU fails to measure the dynamic object surface when the object moves in a large depth range. In this paper, we propose a novel adaptive pixel-by-pixel phase unwrapping (APPU), which extends PPU to an unlimited depth range. First, with PPU, temporary phase maps of objects are obtained referring to the absolute phase map of a background plane. Second, we quantify the difference between the image edges of the temporary phase maps and the practical depth edges of dynamic objects. Moreover, according to the degree of the edge difference, the temporary phase maps are categorized into two classes: failed phase maps and relative phase maps. Third, by combining a mobile reference phase map and the edge difference quantization technique, the failed phase maps are correspondently converted into relative phase maps. Finally, the relative phase maps are innovatively transformed into the absolute phase maps using a new shadow-informed depth estimation method (SDEM). The proposed approach is suitable for high-speed 3-D shape measurement without depth limitations or additional projection patterns.

20.
Opt Express ; 27(16): 22100-22115, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510504

RESUMEN

Arbitrary two-dimensional (2-D) motion introduces coordinate errors and phase errors to three-dimensional (3-D) shape measurement of objects in phase-shifting profilometry (PSP). This paper presents a new robust 3-D reconstruction method for arbitrary 2-D moving objects by introducing an adaptive reference phase map and the motion estimation based on fence image. First, a composite fence image is used to track object motion. Second, to obtain the transformation matrixes and remove the coordinate errors among object images, the angle extraction technique and the 1-D hybrid phase correlation method (1-D HPCM) are integrated to automatically estimate the sub-pixel motion of objects. Third, the phase errors are compensated to obtain the rough absolute phase map of objects by combining the transformation matrixes with the reference phase map. Finally, the absolute phase map is refined to reconstruct the 3-D surfaces of moving objects with adaptive reference phase map. The proposed computational framework can accurately and automatically realize 3-D shape measurement of arbitrary objects with 2-D movement. The results of experiment verify the effectiveness of our computational framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...