Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 132885, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838894

RESUMEN

Fructose 1,6-bisphosphate aldolase (FBA) is a pivotal enzyme, which plays a critical role in fixing CO2 through the process of in the Calvin cycle. In this study, a comprehensive exploration of the FBA family genes in moso bamboo (Phyllostachys edulis) was conducted by the bioinformatics and biological analyses. A total of nine FBA genes (PeFBA1-PeFBA9) were identified in the moso bamboo genome. The expression patterns of PeFBAs across diverse tissues of moso bamboo suggested that they have multifaceted functionality. Notably, PeFBA8 might play an important role in regulating photosynthetic carbon metabolism. Co-expression and cis-element analyses demonstrated that PeFBA8 was regulated by a photosynthetic regulatory transcription factor (PeGLK1), which was confirmed by yeast one-hybrid and dual-luciferase assays. In-planta gene editing analysis revealed that the edited PeFBA8 mutants displayed compromised photosynthetic functionality, characterized by reduced electron transport rate and impaired photosystem I, leading to decreased photosynthesis rate overall, compared to the unedited control. The recombinant protein of PeFBA8 from prokaryotic expression exhibited enzymatic catalytic function. The findings suggest that the expression of PeFBA8 can affect photosynthetic efficiency of moso bamboo leaves, which underlines the potential of leveraging PeFBA8's regulatory mechanism to breed bamboo varieties with enhanced carbon fixation capability.

2.
Plant Biotechnol J ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743918

RESUMEN

Moso bamboo (Phyllostachys edulis) known as Mao Zhu (MZ) in Chinese exhibits various forms with distinct morphological characteristics. However, the evolutionary relationship among MZ forms and the mechanisms of culm shape variation are still lacking. Here, the main differences among MZ forms were identified as culm shape variation, which were confirmed by analysing MZ forms (799 bamboo culms) and MZ (458 bamboo culms) populations. To unravel the genetic basis underlying the morphological variations, 20 MZ forms were subjected to whole-genome resequencing. Further analysis yielded 3 230 107 high-quality SNPs and uncovered low genetic diversity and high genotype heterozygosity associated with MZ forms' formation. By integrating the SNP data of 427 MZ individuals representing 15 geographic regions, the origins of eight MZ forms were successfully traced using the phylogenetic tree and the identified common heterozygous loci. Meanwhile, transcriptomic analysis was performed using shoots from MZ and its two forms with culm shape variation. The results, combined with genomic analyses, demonstrated that hormone signalling related genes played crucial roles in culm variation. Co-expression network analysis uncovered genes associated with multiple plant hormone signal transduction, especially auxin and cytokinin were involved in culm shape variation. Furthermore, the regulatory relationships of a specific transcription factor and their target genes associated with auxin and ethylene signalling were validated by yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter. Overall, this study provides important insights into the culm shape variation formation in bamboo, which facilitates to breed new varieties with novel culms.

3.
New Phytol ; 243(1): 195-212, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708439

RESUMEN

Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.


Asunto(s)
Acuaporinas , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Agua , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Agua/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Acuaporinas/metabolismo , Acuaporinas/genética , Transporte Biológico , Poaceae/genética , Poaceae/fisiología , Modelos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Tolerancia a la Sal/genética , Fosforilación , Unión Proteica/efectos de los fármacos , Estrés Fisiológico
4.
Plant Cell Environ ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644587

RESUMEN

ROOTHAIRLESS (RHL) is a typical type of basic helix-loop-helix (bHLH) transcription factor (TF), which has been reported to participate in various aspects of plant growth and in response to stress. However, the functions of RHL subfamily members in moso bamboo (Phyllostachys edulis) remain unknown. In this study, we identified 14 bHLH genes (PeRHL1-PeRHL14) in moso bamboo. Phylogenetic tree and conserved motif analyses showed that PeRHLs were clustered into three clades. The expression analysis suggested that PeRHL4 was co-expressed with PeTIP1-1 and PePHT1-1 in moso bamboo. Moreover, these three genes were all up-regulated in moso bamboo under drought stress and phosphate starvation. Y1H, DLR and EMSA assays demonstrated that PeRHL4 could activate the expression of PeTIP1-1 and PePHT1-1. Furthermore, overexpression of PeRHL4 could increase both drought and phosphate starvation tolerance in transgenic rice, in which the expression of OsTIPs and OsPHT1s was significantly improved, respectively. Overall, our results indicated that drought stress and phosphate starvation could induce the expression of PeRHL4, which in turn activated downstream genes involved in water and phosphate transport. Collectively, our findings reveal that PeRHL4 acting as a positive regulator contributes to enhancing the tolerance of moso bamboo under drought stress and phosphate starvation.

5.
Plants (Basel) ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611497

RESUMEN

Fructose-1,6-bisphosphate aldolase (FBA) is a pivotal enzyme in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle. It plays a critical role in CO2 fixation. Building on previous studies on the FBA gene family in Moso bamboo, our study revealed the biological function of PeFBA6. To identify CSN5 candidate genes, this study conducted a yeast two-hybrid library screening experiment. Subsequently, the interaction between CSN5 and PeFBA6 was verified using yeast two-hybrid and LCI experiments. This investigation uncovered evidence that FBA may undergo deubiquitination to maintain glycolytic stability. To further assess the function of PeFBA6, it was overexpressed in rice. Various parameters were determined, including the light response curve, CO2 response curve, and the levels of glucose, fructose, sucrose, and starch in the leaves of overexpressing rice. The results demonstrated that overexpressed rice exhibited a higher saturation light intensity, net photosynthetic rate, maximum carboxylation rate, respiration rate, and increased levels of glucose, fructose, and starch than wild-type rice. These findings indicated that PeFBA6 not only enhanced the photoprotection ability of rice but also improved the photosynthetic carbon metabolism. Overall, this study enhanced our understanding of the function of FBA and revealed the biological function of PeFBA6, thereby providing a foundation for the development of excellent carbon fixation bamboo varieties through breeding.

6.
Plant Methods ; 19(1): 20, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864483

RESUMEN

BACKGROUND: Bamboo is a perennial and renewable biomass forest resource and its leaf flavonoid is an antioxidant for biological and pharmacological research. The established genetic transformation and gene editing systems in bamboo are significantly limited by the dependence on bamboo regeneration capability. The way to improve the flavonoid content in bamboo leaves through biotechnology is still not feasible. RESULTS: Here, we developed an in-planta, Agrobacterium-mediated gene expression method for exogenous genes via wounding and vacuum in bamboo. We demonstrated that the RUBY served as a reporter efficiently expressed in bamboo leaves and shoots, albeit unable to integrate into the chromosome. We have also developed a gene editing system by creating an in situ mutant of the bamboo violaxanthin de-epoxidase (PeVDE) gene in bamboo leaves, with lower NPQ values under the fluorometer, which can serve as a native reporter for gene editing. Furthermore, the bamboo leaves with increased flavonoid content were achieved by knocking out the cinnamoyl-CoA reductase genes. CONCLUSIONS: Our method can be applied for the functional characterization of novel genes in a short time and is helpful for bamboo leaf flavonoid biotechnology breeding in the future.

7.
BMC Plant Biol ; 23(1): 142, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918810

RESUMEN

BACKGROUND: Nitrogen is a macronutrient element for plant growth and development. Circular RNAs (circRNAs) serve as pivotal regulators for the coordination between nutrient supply and plant demand. Moso bamboo (Phyllostachys edulis) is an excellent plant with fast growth, and the mechanism of the circRNA-target module in response to nitrogen remains unclear. RESULTS: Deep small RNA sequencing results of moso bamboo seedlings under different concentrations of KNO3 (N0 = 0 mM, N6 = 6 mM, N18 = 18 mM) were used to identify circRNAs. A total of 549 circRNAs were obtained, of which 309 were generated from corresponding parental coding genes including 66 new ones. A total of 536 circRNA-parent genes were unevenly distributed in 24 scaffolds and were associated with root growth and development. Furthermore, 52 differentially expressed circRNAs (DECs) were obtained, including 24, 33 and 15 DECs from three comparisons of N0 vs. N6, N0 vs. N18 and N6 vs. N18, respectively. Based on integrative analyses of the identified DECs, differentially expressed mRNAs (DEGs), and miRNAs (DEMs), a competitive endogenous RNA (ceRNA) network was constructed, including five DECs, eight DEMs and 32 DEGs. A regulatory module of PeSca_6:12,316,320|12,372,905-novel_miR156-PH02Gene35622 was further verified by qPCR and dual-luciferase reporter assays. CONCLUSION: The results indicated that circRNAs could participate in multiple biological processes as miRNA sponges, including organ nitrogen compound biosynthesis and metabolic process regulation in moso bamboo. Our results provide valuable information for further study of circRNAs in moso bamboo under fluctuating nitrogen conditions.


Asunto(s)
MicroARNs , ARN Circular , ARN Circular/genética , Nitrógeno/metabolismo , Poaceae/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Redes Reguladoras de Genes
8.
Plant J ; 113(5): 1095-1101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587294

RESUMEN

The application of DNA-protein interaction reporter assays for relational or ratiometric measurements within an experimental system is popular in biological research. However, the existing reporter-based interaction assays always require special equipment, expensive chemicals, and a complicated operation. Here, we developed a DNA-protein interaction technology integrating two visible reporters, RUBY and UV-visible GFP (eYGFPuv), which allows the expression of the cassette reporter contained cis-acting DNA element (DE) fused upstream of TATA box and RUBY, and a constitutive promoter regulating eYGFPuv in the same construct. The interaction of transcription factor (TF) and the DE can be detected by co-expressed the cassette reporter and TF in tobacco leaves where the cassette reporter alone serves as a control. We also revealed that eight function-unknown bamboo AP2/ERFs interacted with the DE of ANT-AP2R1R2 (ABE), DRE (DBE), GCC-box (EBE), and RAV1 binding element (RBE), respectively, which are consistent with the results by dual-luciferase reporter assays. Thus, the dual-visible reporters offer a convenient, visible, and cost-saving alternative to other existing techniques for DNA-protein interaction in plants.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica , ADN , Genes Reporteros
9.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232520

RESUMEN

The 14-3-3 protein family plays an important role in regulating plant growth and development. The genes of the 14-3-3 family have been reported in multiple species. However, little is known about the 14-3-3 gene family in bamboo. In this study, a total of 58 genes belonging to the 14-3-3 family were identified in three representative bamboo species, i.e., Olyra latifolia, Phyllostachys edulis, and Bonia amplexicaulis, whose encoding proteins were grouped into ε and non-ε groups by phylogeny analysis with 14-3-3 proteins from Arabidopsis thaliana and Oryza sativa. The 14-3-3s had diverse gene structures and motif characteristics among the three bamboo species. Collinearity analysis suggested that the genes of the 14-3-3 family in bamboo had undergone a strong purification selection during evolution. Tissue-specific expression analysis showed the expression of Pe14-3-3s varied in different tissues of P. edulis, suggesting that they had functional diversity during growth and development. Co-expression analysis showed that four Pe14-3-3s co-expressed positively with eight ribosomal genes. Yeast two-hybrid (Y2H) assays showed that Pe14-3-3b/d could interact with Pe_ribosome-1/5/6, and qPCR results demonstrated that Pe14-3-3b/d and Pe_ribosome-1/5/6 had similar expression trends with the increase in shoot height, which further confirmed that they would work together to participate in the shoot growth and development of bamboo. Additionally, the transgenic Arabidopsis plants overexpressing Pe14-3-3b had longer roots, a larger stem diameter, an earlier bolting time and a faster growth rate than wild-type Arabidopsis, indicating that Pe14-3-3b acted as a growth promoter. Our results provide comprehensive information on 14-3-3 genes in bamboo and highlight Pe14-3-3b as a potential target for bamboo improvement.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Poaceae/genética , Poaceae/metabolismo
10.
Front Plant Sci ; 13: 1021161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212302

RESUMEN

Bamboo shoot is one of nutritious vegetables in China. However, the edible quality of fresh bamboo shoots deteriorates easily after harvest. Here, morphological, physiological, transcriptomic and microRNA sequencing analyses were conducted to investigate the postharvest characteristics of moso bamboo (Phyllostachys edulis) shoots. Rapid decreases of soluble sugars, structural polysaccharides and hydrolyzed tannins, and increases of lignin and condensed tannins were observed in the postharvest bamboo shoots. Differentially expressed genes (DEGs) and miRNAs with opposite trends were mainly enriched in structural polysaccharide metabolism, starch and sucrose metabolism and glycolysis pathways, which were consistent with the changes of carbohydrates. A co-expression network of carbohydrate metabolism was constructed, which was verified by qPCR and yeast one-hybrid (Y1H) assay. Furthermore, the function of one hub glycosyltransferase gene was validated in Arabidopsis, which confirmed that it was involved in xylan biosynthesis. These results are of great significance for revealing the carbohydrate metabolism mechanisms of postharvest bamboo shoots and provide a potential candidate gene for molecular breeding related to xylan in the future.

11.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293422

RESUMEN

The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been demonstrated to perform an important post-translational regulatory role in plants by mediating multiple biological processes. Despite their importance, KFBs have not yet been identified and characterized in bamboo. In this study, 19 PeKFBs were identified with F-box and Kelch domains; genes encoding these PeKFBs were unevenly distributed across 12 chromosomes of moso bamboo. Phylogenetic analysis indicated that the PeKFBs were divided into eight subclades based on similar gene structures and highly conserved motifs. A tissue-specific gene expression analysis showed that the PeKFBs were differentially expressed in various tissues of moso bamboo. All the promoters of the PeKFBs contained stress-related cis-elements, which was supported by the differentially expression of PeKFBs of moso bamboo under drought and cold stresses. Sixteen proteins were screened from the moso bamboo shoots' cDNA library using PeKFB9 as a bait through a yeast two-hybrid (Y2H) assay. Moreover, PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1, which mediated the activity of peroxidase in proteolytic turnover. Taken together, these findings improved our understanding of PeKFBs, especially in response to stresses, and laid a foundation for revealing the molecular mechanism of PeKFB9 in regulating lignin polymerization by degrading peroxidase.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Lignina/genética , Lignina/metabolismo , Filogenia , Polimerizacion , Poaceae/genética , Poaceae/metabolismo , Peroxidasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Front Plant Sci ; 13: 992794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164374

RESUMEN

Culm color variation is an interesting phenomenon that contributes to the breeding of new varieties of ornamental plants during domestication. De-domesticated variation is considered ideal for identifying and interpreting the molecular mechanisms of plant mutations. However, the variation in culm color of bamboo remains unknown. In the present study, yellow and green culms generated from the same rhizome of Phyllostachys vivax cv. Aureocaulis (P. vivax) were used to elucidate the molecular mechanism of culm color formation. Phenotypic and physiological data showed that environmental suitability was higher in green culms than in yellow culms. High-throughput sequencing analysis showed 295 differentially expressed genes (DEGs) and 22 differentially expressed miRNAs (DEMs) in two different colored bamboo culms. There were 103 DEM-DEG interaction pairs, of which a representative "miRNA-mRNA" regulatory module involved in photosynthesis and pigment metabolism was formed by 14 DEM-DEG pairs. The interaction of the three key pairs was validated by qPCR and dual-luciferase assays. This study provides new insights into the molecular mechanism of miRNAs involved in P. vivax culm color formation, which provides evidence for plant de-domestication and is helpful for revealing the evolutionary mechanism of bamboo.

13.
Genes (Basel) ; 13(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140687

RESUMEN

Simple sequence repeats (SSRs) are one of the most important molecular markers, which are widespread in plants. Bamboos are important forest resources worldwide. Here, the comprehensive identification and comparative analysis of SSRs were performed in three woody and two herbaceous bamboo species. Altogether 567,175 perfect SSRs and 71,141 compound SSRs were identified from 5737.8 Mb genome sequences of five bamboo species. Di-nucleotide SSRs were the most predominant type, with an average of ~50,152.2 per species. Most SSRs were located in intergenic regions, while those located in genic regions were relatively less. Moreover, the results of annotation distribution indicated that terms with P450, peroxidase and ATP-binding cassette transporter related to lignin biosynthesis might play important roles in woody and herbaceous bamboos under the mediation of SSRs. Furthermore, the peroxidase gene family consisted of a large number of genes containing SSRs was selected for the evolutionary relationship analysis and SSR markers development. Fifteen SSR markers derived from peroxidase family genes of Phyllostachys edulis were identified as polymorphic in 34 accessions belonging to seven genera in Bambusoideae. These results provided a comprehensive insight of SSR markers into bamboo genomes, which would facilitate bamboo research related to comparative genomics, evolution and marker-assisted selection.


Asunto(s)
Lignina , Repeticiones de Microsatélite , Transportadoras de Casetes de Unión a ATP/genética , ADN Intergénico , Repeticiones de Microsatélite/genética , Nucleótidos , Peroxidasas/genética
14.
Front Plant Sci ; 13: 927949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035723

RESUMEN

Plants employ an array of photoprotection mechanisms to alleviate the harmful effects of high light intensity. The violaxanthin cycle, which is associated with non-photochemical quenching (NPQ), involves violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP) and is one of the most rapid and efficient mechanisms protecting plants under high light intensity. Woody bamboo is a class of economically and ecologically important evergreen grass species widely distributed in tropical and subtropical areas. However, the function of VDE in bamboo has not yet been elucidated. In this study, we found that high light intensity increased NPQ and stimulated the de-epoxidation of violaxanthin cycle components in moso bamboo (Phyllostachys edulis), whereas, samples treated with the VDE inhibitor (dithiothreitol) exhibited lower NPQ capacity, suggesting that violaxanthin cycle plays an important role in the photoprotection of bamboo. Further analysis showed that not only high light intensity but also extreme temperatures (4 and 42°C) and drought stress upregulated the expression of PeVDE in bamboo leaves, indicating that PeVDE is induced by multiple abiotic stresses. Overexpression of PeVDE under the control of the CaMV 35S promoter in Arabidopsis mutant npq1 mutant could rescue its NPQ, indicating that PeVDE functions in dissipating the excess absorbed light energy as thermal energy in bamboo. Moreover, compared with wild-type (Col-0) plants, the transgenic plants overexpressing PeVDE displayed enhanced photoprotection ability, higher NPQ capacity, slower decline in the maximum quantum yield of photosystem II (F v /F m ) under high light intensity, and faster recovery under optimal conditions. These results suggest that PeVDE positively regulates the response to high light intensity in bamboo plants growing in the natural environment, which could improve their photoprotection ability through the violaxanthin cycle and NPQ.

15.
Front Genet ; 13: 854346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651936

RESUMEN

Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.

16.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614625

RESUMEN

The vinyl phytic acid (GPA) was prepared using biophytic acid (PA) and glycidyl methacrylate (GMA), in which double bonds were introduced into the phytic acid molecule to increase the active groups in the phytic acid molecule. Furthermore, itaconic acid (IA) containing two unsaturated double bonds and GPA was polymerized in situ and crosslinked on the surface of cotton fabrics, and flame retardant and crease-proofed fabrics were obtained. The effects of GPA, IA, and the initiator on the flame-retardant and crease-proofing properties of the fabrics were analyzed by a single-factor and double-dip double-nip experiment. A flame-retardant and wrinkle-resistant fabric was obtained when the limiting oxygen index (LOI) and wrinkle recovery angle (WRA) were 28% and 270°, respectively. During combustion, the thermal properties of the fabrics changed; typically, the extrapolated initial temperature (Te) decreased, and moisture release increased. After burning, the fabrics had good shape retention, and the carbon residue content increased to 48%, which effectively inhibited or slowed down the combustion and heat release of the textiles. However, the whiteness, mechanical properties, and washability of the products need to be further improved.

17.
BMC Genomics ; 22(1): 867, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856932

RESUMEN

BACKGROUND: Xylan is one of the most abundant hemicelluloses and can crosslink cellulose and lignin to increase the stability of cell walls. A number of genes encoding glycosyltransferases play vital roles in xylan biosynthesis in plants, such as those of the GT43 family. However, little is known about glycosyltransferases in bamboo, especially woody bamboo which is a good substitute for timber. RESULTS: A total of 17 GT43 genes (PeGT43-1 ~ PeGT43-17) were identified in the genome of moso bamboo (Phyllostachys edulis), which belong to three subfamilies with specific motifs. The phylogenetic and collinearity analyses showed that PeGT43s may have undergone gene duplication, as a result of collinearity found in 12 pairs of PeGT43s, and between 17 PeGT43s and 10 OsGT43s. A set of cis-acting elements such as hormones, abiotic stress response and MYB binding elements were found in the promoter of PeGT43s. PeGT43s were expressed differently in 26 tissues, among which the highest expression level was found in the shoots, especially in the rapid elongation zone and nodes. The genes coexpressed with PeGT43s were annotated as associated with polysaccharide metabolism and cell wall biosynthesis. qRT-PCR results showed that the coexpressed genes had similar expression patterns with a significant increase in 4.0 m shoots and a peak in 6.0 m shoots during fast growth. In addition, the xylan content and structural polysaccharide staining intensity in bamboo shoots showed a strong positive correlation with the expression of PeGT43s. Yeast one-hybrid assays demonstrated that PeMYB35 could recognize the 5' UTR/promoter of PeGT43-5 by binding to the SMRE cis-elements. CONCLUSIONS: PeGT43s were found to be adapted to the requirement of xylan biosynthesis during rapid cell elongation and cell wall accumulation, as evidenced by the expression profile of PeGT43s and the rate of xylan accumulation in bamboo shoots. Yeast one-hybrid analysis suggested that PeMYB35 might be involved in xylan biosynthesis by regulating the expression of PeGT43-5 by binding to its 5' UTR/promoter. Our study provides a comprehensive understanding of PeGT43s in moso bamboo and lays a foundation for further functional analysis of PeGT43s for xylan biosynthesis during rapid growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Xilanos , Glicosiltransferasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
18.
Plant Physiol ; 187(2): 900-916, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608957

RESUMEN

Woody bamboo is environmentally friendly, abundant, and an alternative to conventional timber. Degree of lignification and lignin content and deposition affect timber properties. However, the lignification regulatory network in monocots is poorly understood. To elucidate the regulatory mechanism of lignification in moso bamboo (Phyllostachys edulis), we conducted integrated analyses using transcriptome, small RNA, and degradome sequencing followed by experimental verification. The lignification degree and lignin content increased with increased bamboo shoot height, whereas phenylalanine ammonia-lyase and Laccase activities first increased and then decreased with shoot growth. Moreover, we identified 11,504 differentially expressed genes (DEGs) in different portions of the 13th internodes of different height shoots; most DEGs associated with cell wall and lignin biosynthesis were upregulated, whereas some DEGs related to cell growth were downregulated. We identified a total of 1,502 miRNAs, of which 687 were differentially expressed. Additionally, in silico and degradome analyses indicated that 5,756 genes were targeted by 691 miRNAs. We constructed a regulatory network of lignification, including 11 miRNAs, 22 transcription factors, and 36 enzyme genes, in moso bamboo. Furthermore, PeLAC20 overexpression increased lignin content in transgenic Arabidopsis (Arabidopsis thaliana) plants. Finally, we proposed a reliable miRNA-mediated "MYB-PeLAC20" module for lignin monomer polymerization. Our findings provide definite insights into the genetic regulation of bamboo lignification. In addition to providing a platform for understanding related mechanisms in other monocots, these insights could be used to develop strategies to improve bamboo timber properties.


Asunto(s)
Redes Reguladoras de Genes , Lignina/fisiología , MicroARNs/genética , Brotes de la Planta/fisiología , Poaceae/fisiología , ARN de Planta/genética , Poaceae/genética , Transcriptoma
19.
Nat Commun ; 12(1): 5466, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526499

RESUMEN

Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.


Asunto(s)
Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Poaceae/genética , Transcriptoma , Adaptación Fisiológica/genética , China , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genética de Población/métodos , Genómica/métodos , Geografía , Filogenia , Proteínas de Plantas/genética , Poaceae/clasificación , Poaceae/metabolismo , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma/métodos
20.
Front Genet ; 12: 696300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527019

RESUMEN

Invertases (INVs) can irreversibly hydrolyze sucrose into fructose and glucose, which play principal roles in carbon metabolism and responses to various stresses in plants. However, little is known about the INV family in bamboos, especially their potential function in drought stress. In this study, 29 PeINVs were identified in moso bamboo (Phyllostachys edulis). They were clustered into alkaline/neutral invertase (NINV) and acid invertase (AINV) groups based on the gene structures, conserved motifs, and phylogenetic analysis results. The collinearity analysis showed nine segmental duplication pairs within PeINVs, and 25 pairs were detected between PeINVs and OsINVs. PeINVs may have undergone strong purification selection during evolution, and a variety of stress and phytohormone-related regulatory elements were found in the promoters of PeINVs. The tissue-specific expression analysis showed that PeINVs were differentially expressed in various moso bamboo tissues, which suggested that they showed functional diversity. Both the RNA-seq and quantitative real-time PCR results indicated that four PeINVs were significantly upregulated under drought stress. Co-expression network and Pearson's correlation coefficient analyses showed that these PeINVs co-expressed positively with sugar and water transport genes (SWTGs), and the changes were consistent with sugar content. Overall, we speculate that the identified PeINVs are spatiotemporally expressed, which enables them to participate in moso bamboo growth and development. Furthermore, PeINVs, together with SWTGs, also seem to play vital roles in the response to drought stress. These results provide a comprehensive information resource for PeINVs, which will facilitate further study of the molecular mechanism underlying PeINVs involvement in the response to drought stress in moso bamboo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA