Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049207

RESUMEN

The Ziziphus genus, belonging to the Rhamnaceae family, holds significant economic, nutritional, and medicinal value. However, much remains to be discovered about its diversity and physical characteristics. Factors such as growth, resilience to changes, disease resistance, and unique features contribute to the quality of Ziziphus species. This study aims to investigate the genomes of 200 genotypes from five Ziziphus species: Ziziphus jujuba (Zj), Ziziphus nummularia (Zm), Ziziphus oxyphylla (Zx), Ziziphus mauritiana (Zm), and the cultivated variety Ziziphus jujube var. jujube, collected from Pakistan and China. Our goal is to identify single nucleotide polymorphisms (SNPs) associated with eight different traits and understand the genetic diversity within the selected Ziziphus species and their genotypes. Using high-quality SNPs obtained through genotype-by-sequencing (GBS), we conducted population structure, phylogenetic, and principal coordinates analyses, identifying a total of 10,945 clean SNPs. These genotypes were categorized into two groups, A and B. Natural Ziziphus variants in Pakistan, specifically Z. jujuba and Z. nummularia, exhibited high levels of genetic diversity and polymorphic information content (PIC) of 0.46 and 0.41, respectively, compared to other species. Furthermore, we identified 15 influential candidate genes that play crucial roles in regulating agronomic traits, such as fruit width and diameter, leaf width, plant height, and stem diameter within this group. This study provides valuable insights that can be utilized in Ziziphus breeding efforts.


Asunto(s)
Genotipo , Polimorfismo de Nucleótido Simple , Ziziphus , Ziziphus/genética , Ziziphus/fisiología , Polimorfismo de Nucleótido Simple/genética , Filogenia , Pakistán , Fenotipo , Genoma de Planta/genética , China
2.
Microbiol Res ; 287: 127835, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39032264

RESUMEN

Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.

3.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824495

RESUMEN

Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.

4.
Environ Res ; 257: 119336, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838751

RESUMEN

Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética , Descubrimiento de Drogas
5.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792038

RESUMEN

Lignin, the largest non-carbohydrate component of lignocellulosic biomass, is also a recalcitrant component of the plant cell wall. While the aerobic degradation mechanism of lignin has been well-documented, the anaerobic degradation mechanism is still largely elusive. In this work, a versatile facultative anaerobic lignin-degrading bacterium, Klebsiella aerogenes TL3, was isolated from a termite gut, and was found to metabolize a variety of carbon sources and produce a single kind or multiple kinds of acids. The percent degradation of alkali lignin reached 14.8% under anaerobic conditions, and could reach 17.4% in the presence of glucose within 72 h. Based on the results of infrared spectroscopy and 2D nuclear magnetic resonance analysis, it can be inferred that the anaerobic degradation of lignin may undergo the cleavage of the C-O bond (ß-O-4), as well as the C-C bond (ß-5 and ß-ß), and involve the oxidation of the side chain, demethylation, and the destruction of the aromatic ring skeleton. Although the anaerobic degradation of lignin by TL3 was slightly weaker than that under aerobic conditions, it could be further enhanced by adding glucose as an electron donor. These results may shed new light on the mechanisms of anaerobic lignin degradation.


Asunto(s)
Lignina , Lignina/metabolismo , Anaerobiosis , Glucosa/metabolismo , Klebsiella/metabolismo , Biomasa , Biodegradación Ambiental , Animales
6.
Sci Total Environ ; 931: 172967, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705297

RESUMEN

The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.


Asunto(s)
Bacterias , Fenómenos Fisiológicos Bacterianos , Quimiotaxis , Biodegradación Ambiental
7.
Int J Biol Macromol ; 263(Pt 1): 130359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387643

RESUMEN

Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.


Asunto(s)
Aldehído Oxidorreductasas , Bacillus , Extremófilos , Mutagénesis Sitio-Dirigida , Concentración de Iones de Hidrógeno
8.
Artículo en Inglés | MEDLINE | ID: mdl-38411933

RESUMEN

Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E. coli-B. subtilis) shuttle expression vector pHS-cotG-lip was constructed and displayed on the surface of Bacillus subtilis spores. The analysis of enzymatic properties showed that the optimal catalytic temperature and pH of the immobilized LiP were 55 °C and 4.5, respectively. Compared with free LiP (42 °C and pH4.0), the optimal reaction temperature increased by 13 °C. After incubation at 70 °C for 1 h, its activity remained above 30%, while the free LiP completely lost its activity under the same conditions. Adding Mn2+, DL-lactic acid, and PEG-4000 increased the CotG-LiP enzyme activity to 313%, 146%, and 265%, respectively. The recyclability of spore display made the fusion protein CotG-LiP retain more than 50% enzyme activity after four cycles. The excellent recycling rate indicated that LiP displayed on the spore surface had a good application prospect in sewage treatment and other fields, and also provided a reference for the rapid and low-cost immobilized production of enzyme preparations.

9.
Sci Total Environ ; 918: 170498, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307266

RESUMEN

Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.


Asunto(s)
Lacasa , Agua , Animales , Humanos , Lacasa/metabolismo , Ecosistema , Xenobióticos , Biotransformación , Biodegradación Ambiental
10.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373510

RESUMEN

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Deshidrogenasas de Carbohidratos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/química
11.
Int J Biol Macromol ; 260(Pt 2): 129595, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253138

RESUMEN

Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.


Asunto(s)
Pared Celular , Lignina , Lignina/metabolismo , Pared Celular/metabolismo , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/metabolismo , Agua/metabolismo
12.
Environ Res ; 241: 117415, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37844684

RESUMEN

Periodontitis is a severe form of gum disease caused by bacterial plaque that affects millions of people and has substantial worldwide health and economic implications. However, current clinical antiseptic and antimicrobial drug therapies are insufficient because they frequently have numerous side effects and contribute to widespread bacterial resistance. Recently, nanotechnology has shown promise in the synthesis of novel periodontal therapeutic materials. Nanoparticles are quickly replacing antibiotics in the treatment of bacterial infections, and their potential application in dentistry is immense. The alarming increases in antimicrobial resistance further emphasize the importance of exploring and utilizing nanotechnology in the fight against tooth diseases particularly periodontitis. We developed 16 different combinations of mesoporous silica nanomaterials in this study by ageing, drying, and calcining them with 11 different metals including silver, zinc, copper, gold, palladium, ruthenium, platinum, nickel, cerium, aluminium, and zirconium. The antibacterial properties of metal-doped silica were evaluated using four distinct susceptibility tests. The agar well diffusion antibacterial activity test, which measured the susceptibility of the microbes being tested, as well as the antibacterial efficacy of mesoporous silica with different silica/metal ratios, were among these studies. The growth kinetics experiment was used to investigate the efficacy of various metal-doped silica nanoparticles on microbial growth. To detect growth inhibitory effects, the colony-forming unit assay was used. Finally, MIC and MBC tests were performed to observe the inhibition of microbial biofilm formation. Our findings show that silver- and zinc-doped silica nanoparticles synthesized using the sol-gel method can be effective antimicrobial agents against periodontitis-causing microbes. This study represents the pioneering work reporting the antimicrobial properties of metal-loaded TUD-1 mesoporous silica, which could be useful in the fight against other infectious diseases too.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Periodontitis , Humanos , Plata , Dióxido de Silicio , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Periodontitis/tratamiento farmacológico , Zinc
13.
Environ Toxicol ; 39(1): 120-134, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665211

RESUMEN

The consumption of contaminated finfish from the polluted river channel of Turag-Tongi-Balu, Kamarpara site, Dhaka poses significant health hazards to humans. We used mass spectrometry on chemically digested liquid samples from five fish species from Turag-Tongi-Balu to estimate the concentrations of 10 elements (Cr, Mn, Ni, Cu, Zn, As, Se, Cd, Fe, and Pb). Except M. vittatus, the mean concentrations of Cd, Mn, Pb, and Se exceeded the Food Safety Guideline (FSG) value in all fish species. Among the species studied, L. rohita, C. punctata, C. batrachus, H. fossilis, and M. vittatus exhibited higher Mn concentrations surpassing the FSG threshold, thus elevating the non-carcinogenic risk across all species. There were statistically significant differences (p < .05) in the mean concentrations of heavy metals among fish species. The Target Hazard Quotient (THQ) value of Mn poses a significant non-carcinogenic risk to human health, while the hazard of other metals is negligible. Except for M. vittus, the Hazard Index value (HI ≥ 1) revealed the risk that all metals exceed the limit and pose a threat to human health. Cd, As, and Ni metals pose a significant carcinogenic risk to human health from the consumption of fish samples, which is a particularly alarming target cancer risk (TCR). In conclusion, regular dietary consumption of fish from this polluted ecosystem of the Turag-Tongi-Balu River channel's Kamarpara site poses a significant health risk and is indicated as cancer. This study emphasizes the significance of monitoring heavy metal contamination in finfish and minimizing the risk to human health with effective measures.


Asunto(s)
Metales Pesados , Neoplasias , Contaminantes Químicos del Agua , Animales , Bangladesh , Cadmio , Ecosistema , Monitoreo del Ambiente/métodos , Peces , Agua Dulce , Plomo , Medición de Riesgo , Ríos/química
14.
J Sci Food Agric ; 104(2): 759-768, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37658688

RESUMEN

BACKGROUND: Kombucha is a popular fermented drink with therapeutic benefits. The present study aimed to examine the fermentation of turmeric-infused kombucha and evaluate its biological activities and functional properties. RESULTS: The study of pH dynamics during fermentation found that turmeric kombucha has a lower pH decrease than standard kombucha, with the lowest pH of 3.1 being observed in 0.1% turmeric kombucha and the maximum pH of 3.8 found in 1% turmeric kombucha. The research shows that the symbiotic consortia of bacteria and yeast alters during the fermentation process with turmeric. Gas chromatogrphy-mass spectrometry analysis revealed that turmeric kombucha is abundant in terpenes, ketones, alcohols, aldehydes, phenols and fatty acids, with higher levels of active ingredients than regular kombucha. The kombucha with 0.6% turmeric had the highest overall acceptance score (9.0) in sensory evaluation. The total phenolic content after fermentation was in the range 0.2-0.8 mg gallic acid equivalents mL-1 . Increasing turmeric concentrations increased the antioxidant, cytotoxic and antibacterial activity of kombucha analogs, with the highest antioxidant activity (89%) observed at 0.8% turmeric, and the maximum cytotoxicity (74%) and antibacterial activity (zones of inhibition of 17.7 and 15.9 mm against Staphylococcus aureus and Escherichia coli, respectively) observed at 1% turmeric. CONCLUSION: The fermentation of kombucha infused with turmeric enhanced its biological activities, making it a healthier alternative to traditional kombucha and presenting new opportunities in the field of functional foods. Further investigations into the mechanisms underlying these effects and in vivo studies are warranted to fully comprehend the impact of turmeric kombucha consumption on human health. © 2023 Society of Chemical Industry.


Asunto(s)
Bacterias , Curcuma , Humanos , Fermentación , Fenoles , Antibacterianos/farmacología , Escherichia coli
15.
Mar Drugs ; 21(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38132942

RESUMEN

Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes.


Asunto(s)
Metilación de ADN , Neoplasias , Animales , Ratones , Ratones Desnudos , ADN/metabolismo , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
16.
Food Chem X ; 20: 101035, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144819

RESUMEN

Lignin valorization to produce functionalized materials is challenging. This study harnessed the versatile properties of lignin through a grafting reaction involving the aryl hydroxyl group of alkali lignin (AL) and enzymatically modified-alkali lignin (EMAL) using Bacillus ligninphilus-derived laccase (Lacc) L1 and C. seriivinvornas-derived dye-decolorizing peroxidase (DyP) with keratin (K) amide group. This reaction was executed utilizing an eco-friendly solvent with the aim of generating thin films. A thorough investigation was conducted, focusing on grafting AL and EMAL onto K. The incorporation of EMAL into the films enhanced tensile strength (TS) (14.8±1.8 MPa) and elongation at break (EAB) (23.7±0.3 %). Additionally, it enhanced thermal stability, suppressed the proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and mitigated oxidative stress. This study introduces a novel approach for lignin valorization, offering the potential to tailor mechanical properties, antibacterial and antioxidant properties of the final material, making it sustainable substitute for petroleum-based products.

17.
Environ Monit Assess ; 195(11): 1361, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870605

RESUMEN

The anticipated increase in the influx of plastic waste into aquatic environments has propelled the identification and elimination of plastic waste into the global agenda. The plastics sector generates a significant volume of materials, which, due to their extended durability, accumulate rapidly in natural ecosystems. Consequently, this indiscriminate utilization, along with the deposition of plastic waste (PW) in landfills and inadequate recycling practices, leads to diverse economic, social, and environmental consequences. Microplastics (MPs) are a type of PW that has been fragmented into particles measuring less than 5 mm. These particles have been found in several environments, including the air, soil, freshwater, and ocean ecosystems, where they accumulate in large quantities. In order to gain insight into the ecological risks and resource implications associated with a plastic product, it is strongly advised to conduct life cycle and sustainability analyses. Therefore, this paper examines various strategies aimed at achieving effective management of MP waste in order to develop a conceptual framework for MPs in circular economy and life cycle assessment (LCA). The findings of this study provides a new avenue for future research and contribution to manage MP waste as well as reduce their environmentally hazardous impact.


Asunto(s)
Microplásticos , Administración de Residuos , Animales , Plásticos , Ecosistema , Monitoreo del Ambiente , Estadios del Ciclo de Vida
18.
Environ Sci Pollut Res Int ; 30(51): 110590-110599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792198

RESUMEN

Engine oil spills have been associated with a wide range of human health problems. However, little is known about the effects of petroleum hydrocarbon pollution on soil microbial communities. In this study, three samples were collected from oil-polluted soils (OPS), and one control soil (CS) from Taolin town, China, near the old engine's scrapes was used. The aims of this study were to conduct metagenomic sequencing and subsequently perform resistome and virulome analysis. We also aimed to validate anti-microbial resistance and virulence genes and anti-bacterial sensitivity profiles among the isolates from oil-polluted soils. The OPS microbial community was dominated by bacterial species compared to the control samples which were dominated by metazoans and other organisms. Secondly, the resistosome and virulome analysis showed that ARGs and virulence factors were higher among OPS microbial communities. Antibiotic susceptibility assay and qPCR analysis for ARGs and virulence factors showed that the oil-polluted soil samples had remarkably enhanced expression of these ARGs and some virulence genes. Our study suggests that oil pollution contributes to shifting microbial communities to more resilient types that could survive the toxicity of oil pollution and subsequently become more resilient in terms of higher resistance and virulence potential.


Asunto(s)
Bacterias , Genes Bacterianos , Humanos , Virulencia , Bacterias/genética , Suelo , Farmacorresistencia Microbiana/genética , China , Factores de Virulencia , Microbiología del Suelo , Antibacterianos/farmacología
19.
Int J Biol Macromol ; 253(Pt 4): 127117, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37774822

RESUMEN

Although dye-decolourising peroxidases (DyPs) are well-known for lignin degradation, a comprehensive understanding of their mechanism remains unclear. Therefore, studying the mechanism of lignin degradation by DyPs is necessary for industrial applications and enzyme engineering. In this study, a dye-decolourising peroxidase (CsDyP) gene from C. serinivorans was heterologously expressed and studied for its lignin degradation potential. Molecular docking analysis predicted the binding of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), veratryl alcohol (VA), 2, 6-dimethylphenol (2, 6- DMP), guaiacol (GUA), and lignin to the substrate-binding pocket of CsDyP. Evaluation of the enzymatic properties showed that CsDyP requires pH 4.0 and 30 °C for optimal activity and has a high affinity for ABTS. In addition, CsDyP is stable over a wide range of temperatures and pH and can tolerate 5.0 mM organic solvents. Low NaCl concentrations promoted CsDyP activity. Further, CsDyP significantly reduced the chemical oxygen demand decolourised alkali lignin (AL) and milled wood lignin (MWL). CsDyP targets the ß-O-4, CO, and CC bonds linking lignin's G, S, and H units to depolymerize and produce aromatic compounds. Overall, this study delivers valuable insights into the lignin degradation mechanism of CsDyP, which can benefit its industrial applications and lignin valorization.


Asunto(s)
Lignina , Peroxidasa , Peroxidasa/metabolismo , Lignina/química , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Peroxidasas/metabolismo , Colorantes/química
20.
Chemosphere ; 340: 139815, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586489

RESUMEN

In this study, a novel oil-degrading strain Enterobacter kobei DH7 was isolated from petroleum-contaminated soil samples from the industrial park in Taolin Town, Lianyungang, China. The whole genome of the strain was sequenced and analyzed to reveal its genomic potential. The oil degradation and growth conditions including nitrogen, and phosphorus sources, degradation cycle, biological dosing, pH, and oil concentration were optimized to exploit its commercial application. The genome of the DH7 strain contains 4,705,032 bp with GC content of 54.95% and 4653 genes. The genome analysis revealed that there are several metabolic pathways and enzyme-encoding genes related to oil degradation in the DH7 genome, such as the paa gene cluster which is involved in the phenylacetic acid degradation pathway, and complete degradation pathways for fatty acid and benzoate, genes related to chlorinated alkanes and olefins degradation pathway including adhP, frmA, and adhE, etc. The strain DH7 under the optimized conditions has demonstrated a maximum degradation efficiency of 84.6% after 14 days of treatment using synthetic oil, which comparatively displays a higher oil degradation efficiency than any Enterobacter species known to date. To the best of our knowledge, this study presents the first-ever genomic studies related to the oil degradation potential of any Enterobacter species. As Enterobacter kobei DH7 has demonstrated significant oil degradation potential, it is one of the good candidates for application in the bioremediation of oil-contaminated environments.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/análisis , Enterobacter/genética , Enterobacter/metabolismo , Genómica , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo/análisis , Hidrocarburos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...