Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1419621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206157

RESUMEN

Introduction: Radiation therapy (RT) is one of the primary treatment options for early-stage non-small cell lung cancer (ES-NSCLC). Therefore, accurately predicting the overall survival (OS) rate following radiotherapy is crucial for implementing personalized treatment strategies. This work aims to develop a dual-radiomics (DR) model to (1) predict 3-year OS in ES-NSCLC patients receiving RT using pre-treatment CT images, and (2) provide explanations between feature importanceand model prediction performance. Methods: The publicly available TCIA Lung1 dataset with 132 ES-NSCLC patients received RT were studied: 89/43 patients in the under/over 3-year OS group. For each patient, two types of radiomic features were examined: 56 handcrafted radiomic features (HRFs) extracted within gross tumor volume, and 512 image deep features (IDFs) extracted using a pre-trained U-Net encoder. They were combined as inputs to an explainable boosting machine (EBM) model for OS prediction. The EBM's mean absolute scores for HRFs and IDFs were used as feature importance explanations. To evaluate identified feature importance, the DR model was compared with EBM using either (1) key or (2) non-key feature type only. Comparison studies with other models, including supporting vector machine (SVM) and random forest (RF), were also included. The performance was evaluated by the area under the receiver operating characteristic curve (AUCROC), accuracy, sensitivity, and specificity with a 100-fold Monte Carlo cross-validation. Results: The DR model showed highestperformance in predicting 3-year OS (AUCROC=0.81 ± 0.04), and EBM scores suggested that IDFs showed significantly greater importance (normalized mean score=0.0019) than HRFs (score=0.0008). The comparison studies showed that EBM with key feature type (IDFs-only demonstrated comparable AUCROC results (0.81 ± 0.04), while EBM with non-key feature type (HRFs-only) showed limited AUCROC (0.64 ± 0.10). The results suggested that feature importance score identified by EBM is highly correlated with OS prediction performance. Both SVM and RF models were unable to explain key feature type while showing limited overall AUCROC=0.66 ± 0.07 and 0.77 ± 0.06, respectively. Accuracy, sensitivity, and specificity showed a similar trend. Discussion: In conclusion, a DR model was successfully developed to predict ES-NSCLC OS based on pre-treatment CT images. The results suggested that the feature importance from DR model is highly correlated to the model prediction power.

2.
ACS Nano ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041395

RESUMEN

Two-dimensional (2D) perovskites, comprising inorganic semiconductor layers separated by organic spacers, hold promise for light harvesting and optoelectronic applications. Exciton transport in these materials is pivotal for device performance, often necessitating deliberate alignment of the inorganic layers with respect to the contacting layers to facilitate exciton transport. While much attention has focused on in-plane exciton transport, little has been paid to out-of-plane interlayer transport, which presumably is sluggish and unfavorable. Herein, by time-resolved photoluminescence, we unveil surprisingly efficient out-of-plane exciton transport in 2D perovskites, with diffusion coefficients (up to ∼0.1 cm2 s-1) and lengths (∼100 nm) merely a few times smaller or comparable to their in-plane counterparts. We unambiguously confirm that the out-of-plane exciton diffusion coefficient corresponds to a subpicosecond interlayer exciton transfer, governed by the Förster resonance energy transfer (FRET) mechanism. Intriguingly, in contrast to temperature-sensitive intralayer band-like transport, the interlayer exciton transport exhibits negligible temperature dependence, implying a lowest-lying bright exciton state in 2D perovskites, irrespective of spacer molecules. The robust and ultrafast interlayer exciton transport alleviates the constraints on crystal orientation that are crucial for the design of 2D perovskite-based light harvesting and optoelectronic devices.

3.
Nat Commun ; 15(1): 5607, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965277

RESUMEN

Reducing interface nonradiative recombination is important for realizing highly efficient perovskite solar cells. In this work, we develop a synergistic bimolecular interlayer (SBI) strategy via 4-methoxyphenylphosphonic acid (MPA) and 2-phenylethylammonium iodide (PEAI) to functionalize the perovskite interface. MPA induces an in-situ chemical reaction at the perovskite surface via forming strong P-O-Pb covalent bonds that diminish the surface defect density and upshift the surface Fermi level. PEAI further creates an additional negative surface dipole so that a more n-type perovskite surface is constructed, which enhances electron extraction at the top interface. With this cooperative surface treatment, we greatly minimize interface nonradiative recombination through both enhanced defect passivation and improved energetics. The resulting p-i-n device achieves a stabilized power conversion efficiency of 25.53% and one of the smallest nonradiative recombination induced Voc loss of only 59 mV reported to date. We also obtain a certified efficiency of 25.05%. This work sheds light on the synergistic interface engineering for further improvement of perovskite solar cells.

4.
Nanotechnology ; 35(42)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38941985

RESUMEN

Memristors have recently received substantial attention because of their promising and unique emerging applications in neuromorphic computing, which can achieve gains in computation speed by mimicking the topology of the brain in electronic circuits. Traditional memristors made of bulk MoO3and HfO2, for example, suffer from a low switching ratio and poor durability and stability. In this work, a floating-gate memristor is developed based on a mixed-dimensional heterostructure comprising two-dimensional (2D) molybdenum disulfide (MoS2) and zero-dimensional (0D) Au nanoparticles (AuNPs) separated by an insulating hexagonal boron nitride (h-BN) layer (MoS2/h-BN/AuNPs). We find that under the modulation of back-gate voltages, the MoS2/h-BN/AuNPs device operates reliably between a high-resistance state (HRS) and a low-resistance state (LRS) and shows multiple stable LRS states, demonstrating the excellent potential of our memristor in multibit storage applications. The modulation effect can be attributed to electron quantum tunneling between the AuNP charge-trapping layer and the MoS2channel. Our memristor exhibits excellent durability and stability: the HRS and LRS are retained for more than 104s without obvious degradation and the on/off ratio is >104after more than 3000 switching cycles. We also demonstrate frequency-dependent memory properties upon stimulation with electrical and optical pulses.

5.
J Phys Chem Lett ; 15(23): 6194-6201, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38836753

RESUMEN

Lead-free double perovskites (DPs) have become notable in white light emission applications due to the self-trapped exciton (STE) formation in the excited state. However, the mechanism understanding of the excited state dynamics and transport of STE remains ambiguous. Here, we demonstrate a new STE (Bi-STE) forming in tiny Bi-doped Cs2Na0.4Ag0.6InCl6, alongside its intrinsic STE (i-STE), resulting in the DPs photoluminescence quantum yield (PLQY) increasing to as high as >90%. The i-STE exhibits faster formation (60 fs) and slower relaxation dynamics (2.8 µs) compared to the Bi-STE. Moreover, we unveil that the Bi doping can augment the i-STE diffusion properties to attain a diffusion coefficient (diffusion length) of 0.012 cm2 s-1 (1.7 µm) at room temperature, indicating their promise in photovoltaic applications. Our results shed light on significant STE dynamics and transport mechanisms in DPs, providing a new roadmap for advancing existing and crafting new DPs in light emission applications.

6.
Nat Commun ; 15(1): 3287, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627412

RESUMEN

Although asymmetric molecular design has been widely demonstrated effective for organic photovoltaics (OPVs), the correlation between asymmetric molecular geometry and their optoelectronic properties is still unclear. To access this issue, we have designed and synthesized several symmetric-asymmetric non-fullerene acceptors (NFAs) pairs with identical physical and optoelectronic properties. Interestingly, we found that the asymmetric NFAs universally exhibited increased open-circuit voltage compared to their symmetric counterparts, due to the reduced non-radiative charge recombination. From our molecular-dynamic simulations, the asymmetric NFA naturally exhibits more diverse molecular interaction patterns at the donor (D):acceptor (A) interface as compared to the symmetric ones, as well as higher D:A interfacial charge-transfer state energy. Moreover, it is observed that the asymmetric structure can effectively suppress triplet state formation. These advantages enable a best efficiency of 18.80%, which is one of the champion results among binary OPVs. Therefore, this work unambiguously demonstrates the unique advantage of asymmetric molecular geometry, unveils the underlying mechanism, and highlights the manipulation of D:A interface as an important consideration for future molecular design.

7.
Chem Rev ; 124(9): 5695-5763, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38629390

RESUMEN

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.

8.
J Phys Chem Lett ; 15(15): 4015-4023, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38577843

RESUMEN

Wide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs. This technique promotes the spontaneous formation of charge-selective contacts while reducing defect densities by coordinating phosphonic acid groups with the unbonded Pb2+ ions at the bottom interface. The resulting WBG perovskite solar cells (PSCs) demonstrated a power conversion efficiency of 19.31% for small-area devices (0.0585 cm2) and 17.63% for large-area modules (19.34 cm2), highlighting the potential of this codeposition strategy for fabricating high-performance, large-area WBG PSCs with enhanced reproducibility. These findings offer valuable insights for advancing WBG PSCs and the scalable fabrication of modules.

9.
J Am Chem Soc ; 146(11): 7831-7838, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445480

RESUMEN

Low-dimensional lead halide perovskites with broadband emission hold great promise for single-component white-light-emitting (WLE) devices. The origin of their broadband emission has been commonly attributed to self-trapped excitons (STEs) composed of localized electronic polarization with a distorted lattice. Unfortunately, the exact electronic and structural nature of the STE species in these WLE materials remains elusive, hindering the rational design of high-efficiency WLE materials. In this study, by combining ultrafast transient absorption spectroscopy and ab initio calculations, we uncover surprisingly similar STE features in two prototypical low dimensional WLE perovskite single crystals: 1D (DMEDA)PbBr4 and 2D (EDBE)PbBr4, despite of their different dimensionalities. Photoexcited excitons rapidly localize to intrinsic STEs within ∼250 fs, contributing to the white light emission. Crucially, STEs in both systems exhibit characteristic absorption features akin to those of Pb+ and Pb3+. Further atomic level theoretical simulations confirm photoexcited electrons and holes are localized on the Pb2+ site to form Pb+- and Pb3+-like species, resembling transient photoinduced Pb2+ disproportionation. This study provides conclusive evidence on the key excited state species for exciton self-trapping and broadband emission in low dimensional lead halide WLE perovskites and paves the way for the rational design of high-efficiency WLE materials.

10.
Adv Mater ; 36(23): e2401370, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373399

RESUMEN

Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.

11.
Adv Mater ; 36(18): e2313105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279607

RESUMEN

Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.

12.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38224211

RESUMEN

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

13.
Small ; 20(13): e2308945, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948432

RESUMEN

The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4I3(rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2. This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.

14.
ACS Nano ; 18(1): 931-938, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154000

RESUMEN

While 2D transition metal dichalcogenides (TMDs) feature interesting layer-tunable multivalley band structures, their preeminent role in determining the photoexcitation charge transfer dynamics in 2D heterostructures (HSs) is yet to be unraveled, as previous charge transfer studies on TMD HSs have been mostly focused on monolayers with a direct bandgap at the K valley. By ultrafast transient absorption spectroscopy and deliberately designed few-layer WSe2/WS2 HSs, we have observed an ultrafast interlayer electron transfer from photoexcited few-layer WSe2 to WS2, prior to intralayer relaxation to lower lying dark valleys. More interestingly, we have identified an unconventional ∼0.5 ps electron back-transfer process after the initial interlayer electron transfer in HSs with WSe2 layers ≥ 3, regenerating indirect intralayer excitons. The result reveals an ielectron and valley relaxation pathway mediated by interlayer charge transfer in 2D HSs, faster than intralayer relaxation. It also sheds light on the origin of generally observed robust ultrafast interlayer charge transfer in TMD HSs and provides guidance toward optoelectronic and valleytronic devices using few-layer TMDs.

15.
J Am Chem Soc ; 145(48): 26257-26265, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37994880

RESUMEN

Sensitizing inorganic semiconductors using singlet fission (SF) materials, which produce two excitons from one absorbed photon, can potentially boost their light-to-electricity conversion efficiency. The SF sensitization is particularly exciting for two-dimensional (2D) layered semiconductors with atomically flat surface and high carrier mobility but limited light absorption. However, efficiently harnessing triplet excitons from SF by charge transfer at organic/inorganic interface has been challenging, and the intricate interplay among competing processes remains unresolved. Here, we investigate SF sensitization in high-quality organic/2D bilayer heterostructures featuring TIPS-Pc single crystals. Through transient magneto-optical spectroscopy, we demonstrate that despite an ultrafast SF process in sub-100 fs, a significant fraction of singlet excitons in TIPS-Pc dissociate at the interface before fission, while triplet excitons from SF undergo diffusion-limited charge transfer at the interface in ∼10 ps to ns. Remarkably, the photocharge generation efficiency reaches 126% in heterostructures with optimal thickness, resulting from the competitive interplay between singlet exciton fission, dissociation, and triplet exciton transport. This presents a promising strategy for advancing SF-enhanced 2D optoelectronics beyond the conventional limits.

16.
Sci Adv ; 9(32): eadh0517, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556538

RESUMEN

Ruddlesden-Popper tin halide perovskites are a class of two-dimensional (2D) semiconductors with exceptional optoelectronic properties, high carrier mobility, and low toxicity. However, the synthesis of phase-pure 2D tin perovskites is still challenging, and the fundamental understanding of their optoelectronic properties is deficient compared to their lead counterparts. Here, we report the synthesis of a series of 2D tin perovskite bulk crystals with high phase purity via a mixed-solvent strategy. By engineering the quantum-well thickness (related to n value) and organic ligands, the optoelectronic properties, including photoluminescence emission, exciton-phonon coupling strength, and exciton binding energy, exhibit a wide tunability. In addition, these 2D tin perovskites exhibited excellent lasing performance. Both high-n value tin perovskite (n > 1) and n = 1 tin perovskite thin flakes were successfully optically pumped to lase. Furthermore, the lasing from 2D tin perovskites could be maintained up to room temperature. Our findings highlight the tremendous potential of 2D tin perovskites as promising candidates for high-performance lasers.

17.
Nat Commun ; 14(1): 4148, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438377

RESUMEN

Distributed photovoltaics in living environment harvest the sunlight in different incident angles throughout the day. The development of planer solar cells with large light-receiving angle can reduce the requirements in installation form factor and is therefore urgently required. Here, thin film organic photovoltaics with nano-sized phase separation integrated in micro-sized surface topology is demonstrated as an ideal solution to proposed applications. All-polymer solar cells, by means of a newly developed sequential processing, show large magnitude hierarchical morphology with facilitated exciton-to-carrier conversion. The nano fibrilar donor-acceptor network and micron-scale optical field trapping structure in combination contributes to an efficiency of 19.06% (certified 18.59%), which is the highest value to date for all-polymer solar cells. Furthermore, the micron-sized surface topology also contributes to a large light-receiving angle. A 30% improvement of power gain is achieved for the hierarchical morphology comparing to the flat-morphology devices. These inspiring results show that all-polymer solar cell with hierarchical features are particularly suitable for the commercial applications of distributed photovoltaics due to its low installation requirement.

18.
J Phys Chem Lett ; 14(26): 6179-6186, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379516

RESUMEN

Traditional indirect flat-panel X-ray imaging (FPXI) uses inorganic scintillators with high-Z elements, which lack spectral information about X-ray photons and reflect only integrated X-ray intensity. To address this issue, we developed a stacked scintillator structure that combines organic and inorganic materials. This structure allows X-ray energies to be distinguished in a single shot by using a color or multispectral visible camera. However, the resolution of the resulting dual-energy image is primarily limited by the top scintillator layer. We inserted a layer of anodized aluminum oxide (AAO) between the double scintillators. This layer limits the lateral propagation of scintillation light, improves imaging resolution, and acts as a filter for X-rays. Our research demonstrates the advantages of stacked organic-inorganic scintillator structures for dual-energy X-ray imaging and provides novel and practical applications for relatively low-Z organic scintillators with high internal X-ray-to-light conversion efficiency.

19.
J Am Chem Soc ; 145(20): 11227-11235, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159928

RESUMEN

Whether and how an electron-hole pair at the donor-acceptor interface separates from their mutual Coulombic interaction has been a long-standing question for both fundamental interests and optoelectronic applications. This question is particularly interesting but yet to be unraveled in the emerging mixed-dimensional organic/2D semiconductor excitonic heterostructures where the Coulomb interaction is poorly screened. Here, by tracking the characteristic electroabsorption (Stark effect) signal from separated charges using transient absorption spectroscopy, we directly follow the electron-hole pair separation process in a model organic/2D heterostructure, vanadium oxide phthalocyanine/monolayer MoS2. After sub-100 fs photoinduced interfacial electron transfer, we observe a barrier-less long-range electron-hole pair separation to free carriers within 1 ps by hot charge transfer exciton dissociation. Further experiment reveals the key role of the charge delocalization in organic layers sustained by the local crystallinity, while the inherent in-plane delocalization of the 2D semiconductor has a negligible contribution to charge pair separation. This study reconciles the seemingly contradicting charge transfer exciton emission and dissociation process and is important to the future development of efficient organic/2D semiconductor optoelectronic devices.

20.
Adv Mater ; 35(30): e2300820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37073407

RESUMEN

Terpolymerization and regioisomerization strategies are combined to develop novel polymer donors to overcome the difficulty of improving organic solar cells (OSCs) performance. Two novel isomeric units, bis(2-hexyldecyl)-2,5-bis(4-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTO) and bis(2-hexyldecyl) 2,5-bis(3-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTI), are obtained and incorporated into the PM6 backbone via random copolymerization to form a series of terpolymers. Interestingly, it is found that different chlorine (Cl) substituent positions can significantly change the molecular planarity and electrostatic potential (ESP) owing to the steric hindrance effect of the heavy Cl atom, which leads to different molecular aggregation behaviors and miscibility between the donor and acceptor. The TTO unit features a higher number of multiple S···O non-covalent interactions, more positive ESP, and fewer isomer structures than TTI. As a result, the terpolymer PM6-TTO-10 exhibits a much better molecular coplanarity, stronger crystallinity, more obvious aggregation behavior, and proper phase separation in the blend film, which are conducive to more efficient exciton dissociation and charge transfer. Consequently, the PM6-TTO-10:BTP-eC9-based OSCs achieve a champion power conversion efficiency of 18.37% with an outstanding fill factor of 79.97%, which are among the highest values reported for terpolymer-based OSCs. This work demonstrates that terpolymerization combined with Cl regioisomerization is an efficient approach for achieving high-performance polymer donors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...