Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Clin Invest ; 133(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37402153

RESUMEN

BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Adulto , Humanos , Polisacáridos Bacterianos/genética , Receptores de Antígenos de Linfocitos B , Salmonella typhi/genética , Fiebre Tifoidea/prevención & control , Vacunas Tifoides-Paratifoides/genética , Vacunación
3.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037709

RESUMEN

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Asunto(s)
Vacunas contra el Adenovirus , Coxiella burnetii , Fiebre Q , Animales , Ratones , Coxiella burnetii/genética , Fiebre Q/prevención & control , Lipopolisacáridos , Vacunas Bacterianas/genética , Vacunación , Inmunización , Adenoviridae/genética
4.
Expert Rev Vaccines ; 20(12): 1515-1538, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34550840

RESUMEN

INTRODUCTION: The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED: In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION: Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.


Asunto(s)
Lipopolisacáridos , Vacunas , Bacterias , Vacunas Bacterianas , Glicoconjugados , Humanos , Antígenos O , Vacunas Conjugadas
5.
J Biol Chem ; 295(14): 4541-4555, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094229

RESUMEN

Many members of the C-type lectin family of glycan-binding receptors have been ascribed roles in the recognition of microorganisms and serve as key receptors in the innate immune response to pathogens. Other mammalian receptors have become targets through which pathogens enter target cells. These receptor roles have often been documented with binding studies involving individual pairs of receptors and microorganisms. To provide a systematic overview of interactions between microbes and the large complement of C-type lectins, here we developed a lectin array and suitable protocols for labeling of microbes that could be used to probe this array. The array contains C-type lectins from cow, chosen as a model organism of agricultural interest for which the relevant pathogen-receptor interactions have not been previously investigated in detail. Screening with yeast cells and various strains of both Gram-positive and -negative bacteria revealed distinct binding patterns, which in some cases could be explained by binding to lipopolysaccharides or capsular polysaccharides, but in other cases they suggested the presence of novel glycan targets on many of the microorganisms. These results are consistent with interactions previously ascribed to the receptors, but they also highlight binding to additional sugar targets that have not previously been recognized. Our findings indicate that mammalian lectin arrays represent unique discovery tools for identifying both novel ligands and new receptor functions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Lectinas Tipo C/metabolismo , Análisis por Matrices de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Bovinos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Lectinas Tipo C/química , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA