Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095190

RESUMEN

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Asunto(s)
Grafito , Oxidación-Reducción , Platino (Metal) , Dióxido de Azufre , Titanio , Titanio/química , Grafito/química , Dióxido de Azufre/química , Platino (Metal)/química , Catálisis , Monóxido de Carbono/química , Agua/química , Contaminantes Atmosféricos/química , Modelos Químicos
2.
J Hazard Mater ; 366: 659-668, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30580140

RESUMEN

In this study, a graphene oxide (GO) membrane with tunable interlayer spacing was fabricated by a facile method combining the inter-layer modification with external treatment. Congo red (CR), a negatively charged dye with π-orbital-rich groups, was adsorbed on nonoxide regions (G regions) of GO nano-sheets; thus, the interlayers were cross-linked by Ca2+ ions through chelating reaction. GO@CR nano-sheets π-π stacking interactions were changed by thermal reduction of the GO/Ca/CR membrane using a hot-pressing method. A broader effective inter-layer spacing control of the GO membrane in wet condition was achieved (from 7.7 ± 0.2 Å to 11.7 ± 0.25 Å). With the decrease of effective inter-layer spacing, the rejection of dyes and heavy metal ions gradually increased (i.e., methylene blue (99.5%), Cu2+ (98.6%), Ni2+ (97.2%), Pb2+ (97.2%) and Cd2+ (99.1%) at 7.7 Å) and a sufficient permeation flux was also achieved (17.1 L/m2·h·bar). Meanwhile, the diffusion mechanism of water molecules inside the interlayer gallery of GO laminates was explored by climbing image nudged elastic band (cNEB) method. The hydrogen bonding between water molecules and hydroxyl groups constrained the diffusion of water molecules; consequently, partially reduced hybrid GO membrane can show a better permeability for water and superior rejection for heavy metal ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...