Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 96(1-2): 89-102, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29214424

RESUMEN

KEY MESSAGE: iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.


Asunto(s)
Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/genética , Gossypium/fisiología , Proteínas de Plantas/genética , Poliaminas/metabolismo , Semillas/genética , Semillas/fisiología
2.
J Plant Physiol ; 215: 132-139, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28644971

RESUMEN

Cottonseed oil has become an important source of edible oil due to its significant cost advantage. However, there is a growing concern over its fatty acid composition and nutritional value. In Gossypium hirsutum, GhFAD2-1 and GhFATB encoding the microsomal oleate desaturase and palmitoyl-acyl carrier protein thioesterase, respectively, play critical roles in regulating the proportions of saturated and polyunsaturated fatty acids in cottonseed lipids. In this study, RNAi technology was used to simultaneously inhibit the expression levels of GhFAD2-1 and GhFATB to improve the quality of cottonseed oil by increasing oleic acid content. Transgenic cotton plants with reduced levels of both target genes were successfully generated. In mature seed kernels of transgenic plants, the content of oleic acid was 38.25%, accordingly increasing by 156.96%, while the content of palmitic acid and linoleic acid was 19.15% and 36.68%, decreasing by 21.28% and 33.92%, respectively, compared with that of the control. The total oil content in transgenic and control kernels was 22.48% and 29.83%, respectively. The reduced oil level in transgenic seeds was accompanied by a reduction in seed index, thereby causing disadvantageous effects on seed germination potentiality and seed vigor, particularly under cool stress conditions. Our results demonstrated the feasibility of simultaneous manipulation of multiple genes using RNAi technology and showed the important role of oil content in seed development and vigor. Our findings provide insight into the physiological significance of the fatty acid composition in cottonseeds.


Asunto(s)
Aceite de Semillas de Algodón/metabolismo , Ácido Oléico/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Ácido Palmítico/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Semillas/metabolismo
3.
Plant Mol Biol ; 92(3): 279-92, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27511192

RESUMEN

Plant regeneration via somatic embryogenesis (SE) is the key step for genetic improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by Agrobacteria, but the molecular mechanisms underlying SE in cotton is still unclear. Here, RNA-Sequencing was used to analyze the genes expressed during SE and their expression dynamics using RNAs isolated from non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryos (SEs). A total of 101, 670 unigenes were de novo assembled. The genes differentially expressed (DEGs) amongst NEC, EC and SEs were identified, annotated and classified. More DEGs were found between SEs and EC than between EC and NEC. A significant number of DEGs were related to hormone homeostasis, stress and ROS responses, and metabolism of polyamines. To confirm the expression dynamics of selected DEGs involved in various pathways, experiments were set up to investigate the effects of hormones (Indole-3-butytric acid, IBA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results showed that exogenous application of IBA and KT positively regulated the development of EC and SEs, and that polyamines and H2O2 promoted the conversion of EC into SEs. Furthermore, we found that low and moderate stress is beneficial for proliferation of EC and SEs formation. Together, our global analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress response synergistically regulating SE in cotton.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Homeostasis/genética , Gossypium/embriología , Cinetina/genética
4.
Front Plant Sci ; 6: 1063, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697030

RESUMEN

The objective of this study was to increase understanding about the mechanism by which polyamines (PAs) promote the conversion of embryogenic calli (EC) into somatic embryos in cotton (Gossypium hirsutum L.). We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE), and investigated the effects of exogenous PAs and H2O2 on differentiation and development of EC. Putrescine (Put), spermidine (Spd), and spermine (Spm) significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm, and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of PA synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...