RESUMEN
This study delves into the potential therapeutic benefits of Fufang Sanling Granules for kidney cancer, focusing on their active components and the underlying mechanisms of their interaction with cancer-related targets. By constructing a drug-active component-target network based on eight herbs, key active compounds such as kaempferol, quercetin, and linolenic acid were identified, suggesting their pivotal roles in modulating immune responses and cellular signaling pathways relevant to cancer progression. The research further identified 51 central drug-disease genes through comprehensive bioinformatics analyses, implicating their involvement in crucial biological processes and pathways. A novel risk score model, encompassing six genes with significant prognostic value for renal cancer, was established and validated, showcasing its effectiveness in predicting patient outcomes through mutation analysis and survival studies. The model's predictive power was further confirmed by its ability to stratify patients into distinct risk groups with significant survival differences, highlighting its potential as a prognostic tool. Additionally, the study explored the relationship between gene expression within the identified black module and the risk score, uncovering significant associations with the extracellular matrix and immune infiltration patterns. This reveals the complex interplay between the tumor microenvironment and cancer progression. The integration of the risk score with clinical parameters through a nomogram significantly improved the model's predictive accuracy, offering a more comprehensive tool for predicting kidney cancer prognosis. In summary, by combining detailed molecular analyses with clinical insights, this study presents a robust framework for understanding the therapeutic potential of Fufang Sanling Granules in kidney cancer. It not only sheds light on the active components and their interactions with cancer-related genes but also introduces a reliable risk score model, paving the way for personalized treatment strategies and improved patient management in the future.
Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Renales , Humanos , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Pronóstico , Medicamentos Herbarios Chinos/uso terapéutico , Variación Genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND: Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS: We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT: Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, ß-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3ß/ß-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3ß/ß-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION: Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/ß-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.
Asunto(s)
Níquel , beta Catenina , Humanos , Níquel/toxicidad , Níquel/metabolismo , beta Catenina/metabolismo , Sestrinas/metabolismo , Regulación hacia Arriba , Transferasas/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Epiteliales/metabolismo , Transformación Celular Neoplásica/genética , ADN/metabolismo , ARN Mensajero/metabolismo , Ubiquitina Tiolesterasa/metabolismoRESUMEN
BACKGROUND: Circular RNAs (circRNAs) are a class of noncoding RNAs that are involved in the progression of many human cancers. The precise gene locus and the roles of circular RNA from Fibronectin type III domain containing 3B (FNDC3B) in OS and its mechanisms of action have not been fully explored. MATERIALS AND METHODS: qRT-qPCR assay was used to determine gene expressions. CCK8 Assay, EdU assay, wound-healing assay, transwell invasion assay and in vivo xenograft assay were used to perform functional investigations. RNA-FISH, immunofluorescence, RIP assay, RNA stability analysis were applied in mechanistic studies. RESULTS: We found that circFNDC3B downregulated and FNDC3B mRNA upregulated in OS, and might be potential biomarkers for indicating disease progression and prognosis of OS patients. CircFNDC3B acted as a tumor suppressor gene to restrain OS progression and FNDC3B functioned as an oncogene to promote OS progression in vitro and in vivo. RNA binding protein RNA binding motif protein 47 (RBM47) could bind to the flanking introns of circFNDC3B to facilitate the generation of circFNDC3B, resulting in the reduction of FNDC3B mRNA and the circFNDC3B-FNDC3B mRNA imbalance. CircFNDC3B also inhibited FNDC3B mRNA expression by reducing its stability via competitively binding to Insulin-like growth-factor-2 mRNA binding protein (IGF2BP1). CONCLUSION: This study demonstrated that RBM47 and IGF2BP1 mediated circular FNDC3B/FNDC3B mRNA imbalance was involved in the malignant processes of OS.
RESUMEN
Lung cancer primarily arises from exposure to various environmental factors, particularly airborne pollutants. Among the various lung carcinogens, benzo(a)pyrene and its metabolite B[a]PDE are the strongest ones that actively contribute to lung cancer development. ATG7 is an E1-like activating enzyme and contributes to activating autophagic responses in mammal cells. However, the potential alterations of ATG7 and its role in B[a]PDE-caused lung carcinogenesis remain unknown. Here, we found that B[a]PDE exposure promoted ATG7 expression in mouse lung tissues, while B[a]PDE exposure resulted in ATG7 induction in human normal bronchial epithelial cells. Our studies also demonstrated a significant correlation between high ATG7 expression levels and poor overall survival in lung cancer patients. ATG7 knockdown significantly repressed Beas-2B cell transformation upon B[a]PDE exposure, and such promotive effect of ATG7 on cell transformation mediated the p27 translation inhibition. Further studies revealed that miR-373 inhibition was required to stabilize ATG7 mRNA, therefore increasing ATG7 expression following B[a]PDE exposure, while ATG7 induction led to the autophagic degradation of the DNA methyltransferase 3 Beta (DNMT3B) protein, in turn promoted miR-494 transcription via its promoter region methylation status suppression. We also found that the miR-494 upregulation inhibited p27 protein translation and promoted bronchial epithelial cell transformation via its directly targeting p27 mRNA 3'-UTR region. Current studies, to the best of our knowledge, are for the first time to identify that ATG7 induction and its mediated autophagy is critical for B[a]PDE-induced transformation of human normal epithelial cells.
Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Proteolisis , Metilación , Regulación hacia Arriba , Células Epiteliales , Regiones Promotoras Genéticas , MicroARNs/genética , MamíferosRESUMEN
It is important to treat a bacterial-infected wound with a hydrogel dressing due to its excellent biocompatibility and extracellular matrix mimicking structure. In this work, the antibacterial curcumin nanoparticles (Cur-NPs) loaded silk fibroin and sodium alginate (SF/SA) composite hydrogels have been developed as dressings for bacterial-infected wound closure. The as-prepared composite hydrogel dressings exhibited excellent biocompatibility and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro. In addition, the composite hydrogel dressings showed good tissue adhesive strength because of their high viscosity and abundance of amino groups distributed on SF, which can form multi-aldehyde polysaccharides with the tissue surface. The porous 3D structure of the composite hydrogel dressings facilitated the absorption of exudate from the wound site and promoted the fusion of cellular nutrients and metabolites. In the full-thickness skin defect model with and without bacterial infection, the Cur-NPs loaded SF/SA composite hydrogel dressings prominently improves the closure of bacterial-infected wounds by improving cell proliferation, anti-inflammatory properties, vascular remodeling, and collagen deposition.
Asunto(s)
Curcumina , Fibroínas , Nanopartículas , Cicatrización de Heridas , Curcumina/farmacología , Hidrogeles , Alginatos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Vendajes/microbiología , BacteriasRESUMEN
In the original article [...].
RESUMEN
The function and underlying mechanisms of p50 in the regulation of protein expression is much less studied because of its lacking of transactivation domain. In this study, we discovered a novel function of p50 in its stabilization of hypoxia-inducible factor 1α (HIF-1α) protein under the condition of cells exposed to arsenic exposure. In p50-deficient (p50-/-) cells, the HIF-1α protein expression was impaired upon arsenic exposure, and such defect could be rescued by reconstitutional expression of p50. Mechanistic study revealed that the inhibition of autophagy-related gene 7 (ATG7)-dependent autophagy was in charge of p50-mediated HIF-1α protein stabilization following arsenic exposure. Moreover, p50 deletion promoted nucleolin (NCL) protein translation to enhance ATG7 mRNA transcription via directly binding transcription factor Sp1 mRNA and increase its stability. We further discovered that p50-mediated miR-494 upregulation gave rise to the inhibition of p50-mediated NCL translation by interacting with its 3'-UTR. These novel findings provide a great insight into the understanding of biomedical significance of p50 protein in arsenite-associated disease development and therapy.
Asunto(s)
Arsénico , Transcripción Genética , Regulación hacia Arriba , ARN Mensajero/genética , ARN Mensajero/metabolismo , Autofagia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismoRESUMEN
The development of multifunctional nanoformulations (NFs) include several features in a single nanosystem for these devices to overcome the disadvantages of inefficiency and undesirable toxicity of traditional therapies and provide new opportunities in the management of tumors. Herein, multifunctional CaO2@Mn-PDA NFs with a core-shell structure, integrating the photothermal conversion properties of Mn-PDA, the chemodynamic properties of doped Mn ions, and relieving hypoxia in the tumor microenvironment (TME) were developed. The as-fabricated CaO2@Mn-PDA NFs were embedded in microneedles (MNs) for transdermal delivery into tumor sites, leading to the generation of a new minimally invasive and synergistic therapeutic strategy against skin melanoma. Under near-infrared (NIR) light irradiation, the CaO2@Mn-PDA NFs exhibited a synergistic therapeutic effect, including photothermal therapy (PTT), chemodynamic therapy (CDT), and modulating hypoxia due to their high photothermal conversion efficiency, boosted intracellular production of reactive oxygen species, excellent chemodynamic reactions, etc. Therefore, the developed MN platform, which can build implanted multifunctional characteristics for on-demand NIR-induced synergistic therapy, have a bright future in tumor suppression.
Asunto(s)
Melanoma , Nanopartículas , Neoplasias Cutáneas , Línea Celular Tumoral , Humanos , Terapia Fototérmica , Neoplasias Cutáneas/tratamiento farmacológico , Microambiente TumoralRESUMEN
Osteosarcoma (OS) is a common malignant bone cancer threatening children and young adults. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in the progression of OS. Herein, we want to clarify the roles of lncRNA human leukocyte antigen complex group 11 (HCG11) in OS. Our data revealed that HCG11 expression is decreased in OS, which is a result of transcriptional repression of YY1. Low HCG11 level is closely associated with larger tumor size and shorter overall survival of OS patients. HCG11 negatively regulates cell proliferation, cell cycle, DNA replication in vitro and tumor growth in vivo. HCG11 can raise p27 Kip1 expression via binding to miR-942-5p and IGF2BP2, and p27 Kip1 acts as a key effector for HCG11 exerting biological functions. In conclusion, HCG11 is downregulated in OS, and restrains OS growth both in vitro and in vivo by raising p27 Kip1 expression via binding to miR-942-5p and IGF2BP2.
Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , MicroARNs/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regulación hacia Arriba , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Background: Parkinson's disease (PD) is a highly heterogeneous disease, especially in the clinical characteristics and prognosis. The PD is divided into two subgroups: tremor-dominant phenotype and non-tremor-dominant phenotype. Previous studies reported abnormal changes between the two PD phenotypes by using the static functional connectivity analysis. However, the dynamic properties of brain networks between the two PD phenotypes are not yet clear. Therefore, we aimed to uncover the dynamic functional network connectivity (dFNC) between the two PD phenotypes at the subnetwork level, focusing on the temporal properties of dFNC and the variability of network efficiency. Methods: We investigated the resting-state functional MRI (fMRI) data from 29 tremor-dominant PD patients (PDTD), 25 non-tremor-dominant PD patients (PDNTD), and 20 healthy controls (HCs). Sliding window approach, k-means clustering, independent component analysis (ICA), and graph theory analysis were applied to analyze the dFNC. Furthermore, the relationship between alterations in the dynamic properties and clinical features was assessed. Results: The dFNC analyses identified four reoccurring states, one of them showing sparse connections (state I). PDTD patients stayed longer time in state I and showed increased FNC between BG and vSMN in state IV. Both PD phenotypes exhibited higher FNC between dSMN and FPN in state II and state III compared with the controls. PDNTD patients showed decreased FNC between BG and FPN but increased FNC in the bilateral FPN compared with both PDTD patients and controls. In addition, PDNTD patients exhibited greater variability in global network efficiency. Tremor scores were positively correlated with dwell time in state I along with increased FNC between BG and vSMN in state IV. Conclusions: This study explores the dFNC between the PDTD and PDNTD patients, which offers new evidence on the abnormal time-varying brain functional connectivity and their network destruction of the two PD phenotypes, and may help better understand the neural substrates underlying different types of PD.
RESUMEN
BACKGROUND: Although miR-190 has been reported to be related to human diseases, especially in the development and progression of cancer, its expression in human bladder cancer (BC) and potential contribution to BC remain unexplored. METHODS: RT-qPCR was used to verify the expression level of miR-190 and CDKN1B. Flow cytometry (FCM) assays were performed to detect cell cycle. Soft agar assay was used to measure anchorage-independent growth ability. Methylation-Specific PCR, Dual-luciferase reporter assay and Western blotting were used to elucidate the potential mechanisms involved. RESULTS: Our studies revealed that downregulation of the p27 (encoded by CDKN1B gene) protein is an important event related to miR-190, promoting the malignant transformation of bladder epithelial cells. miR-190 binds directly to CDKN1B 3'-UTR and destabilizes CDKN1B mRNA. Moreover, miR-190 downregulates TET1 by binding to the TET1 CDS region, which mediates hypermethylation of the CDKN1B promoter, thereby resulting in the downregulation of CDKN1B mRNA. These two aspects led to miR-190 inhibition of p27 protein expression in human BC cells. A more in-depth mechanistic study showed that c-Jun promotes the transcription of Talin2, the host gene of miR-190, thus upregulating the expression of miR-190 in human BC cells. CONCLUSIONS: In this study, we found that miR-190 plays an important role in the development of BC. Taken together, these findings indicate that miR-190 may promote the malignant transformation of human urothelial cells by downregulating CDKN1B, which strengthens our understanding of miR-190 in regulating BC cell transformation.
RESUMEN
Background and Objective: Parkinson disease (PD) with rapid eye movement (REM) sleep behavior disorder (PD-RBD) tend to be a distinct phenotype with more severe clinical characteristics and pathological lesion when compared with PD without RBD (PD-nRBD). However, the pathological mechanism underlying PD-RBD remains unclear. We aim to use the resting-state functional magnetic resonance imaging (rs-fMRI) to explore the mechanism of PD-RBD from the perspective of internal connectivity networks. Materials and Methods: A total of 92 PD patients and 20 age and sex matched normal controls (NC) were included. All participants underwent rs-fMRI scan and clinical assessment. According to the RBD screening questionnaire (RBDSQ), PD patients were divided into two groups: PD with probable RBD (PD-pRBD) and PD without probable RBD (PD-npRBD). The whole brain was divided into 90 regions using automated anatomic labeling atlas. Functional network of each subject was constructed according to the correlation of rs-fMRI blood oxygenation level dependent signals in any two brain regions and network metrics were analyzed using graph theory approaches. Network properties among three groups were compared and correlation analysis was made using distinguishing network metrics and RBDSQ scores. Results: We found both PD-pRBD and PD-npRBD patients existed small-world characteristics. PD-pRBD showed a wider range of nodal property changes in neocortex and limbic system than PD-npRBD patients when compared with NC. Besides, PD-pRBD showed significant enhanced nodal efficiency in the bilateral thalamus and betweenness centrality in the left insula, but, reduced betweenness centrality in the right dorsolateral superior frontal gyrus when compared with PD-npRBD. Moreover, nodal efficiency in the bilateral thalamus were positively correlated with RBDSQ scores. Conclusions: Both NC and PD patients displayed small-world properties and indiscriminate global measure but PD-pRBD showed more extensive changes of nodal properties than PD-npRBD. The increased centrality role in the bilateral thalamus and the left insula, and disruption in the right dorsolateral superior frontal gyrus may play as a key role in underlying pathogenesis of PD-RBD.
RESUMEN
Genotyping of the epidermal growth factor receptor (EGFR) mutation status is of great importance in the screening of appropriate patients with advanced non-small cell lung carcinoma (NSCLC) to receive superior tyrosine kinase inhibitor (TKIs) therapy. Yet conventional assays are generally costly with a relatively long turnaround time for obtaining results, which can lead to a bottleneck for immediately starting TKI therapy in late-staged patients. In this study, we propose an on-site electrochemical platform for sensitive simultaneous genotyping of the two major EGFR mutations (19del and L858R) through plasma ctDNA based on tetrahedral DNA nanostructure decorated screen-printed electrodes (SPE). Linear-after-the-exponential (LATE)-PCR combined with the amplification refractory mutation system (ARMS) was adopted to produce abundant biotin-labeled single-stranded DNA with high amplification efficiency and specificity. Disposable SPE decorated with self-assembled tetrahedral nanostructured DNA probes that showed ordered orientation and good target accessibility enabled the highly efficient hybridization of the specific amplicons through a sandwich-type and quantitatively translated the interfacial hybridization event into electrochemical signals via enzymatic amplification. Taking advantage of the ARMS-based LATE-PCR and the tetrahedral nanostructure-decorated SPE platform, we achieved the accurate detection of around 30 pg DNA of 19del or L858R, or as low as 0.1% of them in the presence of wild-type DNA. Moreover, the EGFR mutation profiles of 13 NSCLC patients we enlisted were accurately genotyped by our electrochemical platform, the results of which were in good agreement with those of commercial genetic detection methods.
Asunto(s)
ADN Tumoral Circulante/sangre , ADN/química , Técnicas Electroquímicas/métodos , Receptores ErbB/genética , Técnicas de Genotipaje/métodos , Nanoestructuras/química , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , ADN Tumoral Circulante/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación , Conformación de Ácido Nucleico , Reacción en Cadena de la PolimerasaRESUMEN
Sex-determining region Y-box 2 (SOX2), a well-known stemness biomarker, is highly expressed in a variety of cancers, including human highly invasive bladder cancer (BC). However, the role of SOX2 may vary in different kinds of malignancy. In the present study, we discovered that ChlA-F, a novel conformation derivative of isolate Cheliensisin A (Chel A), remarkably inhibits the invasive ability of human invasive BC cells through downregulation of SOX2 protein expression. We found that ChlA-F treatment dramatically decreases SOX2 protein expression in human high-grade invasive BC cells. Ectopic expression of SOX2 reversed ChlA-F inhibition of cell invasion ability in human bladder cancer cells, suggesting that SOX2 is a major target of ChlA-F during its inhibition of human BC invasion. Mechanistic studies revealed that ChlA-F downregulates SOX2 at both the protein degradation and protein translation levels. Further studies revealed that ChlA-F treatment induces HuR protein expression and that the increased HuR interacts with USP8 mRNA, resulting in elevation of USP8 mRNA stability and protein expression. Elevated USP8 subsequently acts as an E3 ligase to promote SOX2 ubiquitination and protein degradation. We also found that ChlA-F treatment substantially increases c-Jun phosphorylation at Ser63 and Ser73, initiating miR-200c transcription. The increased miR-200c directly binds to the 3'-UTR of SOX2 mRNA to suppress SOX2 protein translation. These results present novel mechanistic insight into understanding SOX2 inhibition upon ChlA-F treatment and provide important information for further exploration of ChlA-F as a new therapeutic compound for the treatment of highly invasive/metastatic human BC patients.
Asunto(s)
Antineoplásicos/farmacología , Lactonas/farmacología , Factores de Transcripción SOXB1/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
XIAP has generally been thought to function in bladder cancer. However, the potential function of structure-based function of XIAP in human BC invasion has not been well explored before. We show here that ectopic expression of the BIR domains of XIAP specifically resulted in MMP2 activation and cell invasion in XIAP-deleted BC cells, while Src was further defined as an XIAP downstream negative regulator for MMP2 activation and BC cell invasion. The inhibition of Src expression by the BIR domains was caused by attenuation of Src protein translation upon miR-203 upregulation; which was resulted from direct interaction of BIR2 and BIR3 with E2F1 and Sp1, respectively. The interaction of BIR2/BIR3 with E2F1/Sp1 unexpectedly occurred, which could be blocked by serum-induced XIAP translocation. Taken together, our studies, for the first time revealed that: (1) BIR2 and BIR3 domains of XIAP play their role in cancer cell invasion without affecting cell migration by specific activation of MMP2 in human BC cells; (2) by BIR2 interacting with E2F1 and BIR3 interacting with Sp1, XIAP initiates E2F1/Sp1 positive feedback loop-dependent transcription of miR-203, which in turn inhibits Src protein translation, further leading to MMP2-cleaved activation; (3) XIAP interaction with E2F1 and Sp1 is observed in the nucleus. Our findings provide novel insights into understanding the specific function of BIR2 and BIR3 of XIAP in BC invasion, which will be highly significant for the design/synthesis of new BIR2/BIR3-based compounds for invasive BC treatment.
RESUMEN
Recent studies show p85α up-regulates epidermal growth factor (EGF) receptor, thereby promoting malignant cell transformation and migration in normal mouse embryonic fibroblasts (MEFs). However, the potential role of p85α in human bladder cancer (BC) remains unknown. Here, we show that p85α is down-regulated in BC tumor tissues. Ectopic expression of p85α inhibited cell invasion, but not migration, whereas p85α knockdown promoted invasion in BC cells, revealing that p85α inhibits BC invasion. Overexpression of kinase-deficient p110 in T24 T(p85α) cells inhibited BC cell migration, but not invasion, suggesting that the inhibition of p85α on invasion is independent of PI3K activity. The effect of p85α on inhibiting BC invasion was mediated by the inactivation of MMP-2 concomitant with the up-regulation of TIMP-2 and down-regulation of MMP-14. Mechanistic studies revealed c-Jun inactivation was associated with p85α knockdown-induced MMP-14 expression, and down-regulated miR-190, leading to ATG7 mRNA degradation. This suppressed the autophagy-dependent removal of TIMP-2 in human BC cells. The present results identify a novel function of p85α and clarify the mechanisms underlying its inhibition of BC invasion, providing insight into the role of p85α in normal and cancer cells.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Activación Enzimática , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Proteolisis , Estabilidad del ARN , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Muscle invasive bladder cancer (MIBC) is characterized by a poor overall survival rate in patients. Therefore, innovation and evaluation of idea anti-cancer compounds is of importance for reducing the mortality of MIBCs. The chemotherapeutic activity of ChlA-F, a novel C8 fluoride derivative of cheliensisin A with potent anti-neoplastic properties, was barely investigated. We reported here that ChlA-F treatment significantly induced miR-494 expression and suppressed cell invasion in human MIBC cells. Our results indicated that miR-494 was downregulated in M1 metastatic BC patients in comparison to non-metastatic (M0) BC patients, and such downregulation was also well correlated with over survival rate for MIBC patients. Mechanistically, ChlA-F-induced upregulation of miR-494 was due to a HuR-mediated increase in JunB mRNA stabilization and protein expression, which led to an increase in miR-494 transcription via directly binding to the miR-494 promoter region, while the upregulated miR-494 was able to bind the 3'-UTR region of c-Myc mRNA, resulting in decreased c-Myc mRNA stability and protein expression and further reducing the transcription of c-Myc-regulated MMP-2 and ultimately inhibiting BC invasion. Our results provide the first evidence showing that miR-494 downregulation was closely associated with BC metastatic status and overall BC survival, and ChlA-F was able to reverse the level of miR-494 with a profound inhibition of human BC invasion in human invasive BC cells. Our studies also reveal that ChlA-F is a promising therapeutic compound for BCs and miR-494 could also serve as a promising therapeutic target for the treatment of MIBC patients.
Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Lactonas/farmacología , MicroARNs/genética , Metástasis de la Neoplasia/genética , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia/tratamiento farmacológico , Pronóstico , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Estabilidad del ARN/efectos de los fármacos , Análisis de Supervivencia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Although microRNAs have been validated to play prominent roles in the occurrence and development of human bladder cancer (BC), alterations and function of many microRNAs (miRNAs) in bladder cancer invasion are not fully explored yet. miR-146b was reported to be a tumor suppressor or oncomiRNA in various types of cancer. However, its accurate expression, function, and mechanism in bladder cancer remain unclear. Here we discovered that miR-146b was frequently upregulated in bladder cancer tissues compared with adjacent non-cancerous tissues. Inhibition of miR-146b resulted in a significant inhibitory effect on the invasion of bladder cancer cells by reducing mmp2 mRNA transcription and protein expression. We further demonstrated that knockdown of miR-146b attenuated ETS2 expression, which was the transcription factor of matrix metalloproteinase (MMP)2. Moreover, mechanistic studies revealed that miR-146b inhibition stabilized ARE/poly(U)-binding/degradation factor 1 (auf1) mRNA by directly binding to its mRNA 3' UTR, further reduced ets2 mRNA stability, and finally inhibited mmp2 transcription and attenuated bladder cancer invasion abilities. The identification of the miR-146b/AUF1/ETS2/MMP2 mechanism for promoting bladder cancer invasion provides significant insights into understanding the nature of bladder cancer metastasis. Targeting the pathway described here may be a novel approach for inhibiting invasion and metastasis of bladder cancer.