Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1334913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352650

RESUMEN

Low temperature is a critical environmental stress factor that restricts crop growth and geographical distribution, significantly impacting crop quality and yield. When plants are exposed to low temperatures, a series of changes occur in their external morphology and internal physiological and biochemical metabolism. This article comprehensively reviews the alterations and regulatory mechanisms of physiological and biochemical indices, such as membrane system stability, redox system, fatty acid content, photosynthesis, and osmoregulatory substances, in response to low-temperature stress in plants. Furthermore, we summarize recent research on signal transduction and regulatory pathways, phytohormones, epigenetic modifications, and other molecular mechanisms mediating the response to low temperatures in higher plants. In addition, we outline cultivation practices to improve plant cold resistance and highlight the cold-related genes used in molecular breeding. Last, we discuss future research directions, potential application prospects of plant cold resistance breeding, and recent significant breakthroughs in the research and application of cold resistance mechanisms.

2.
Biotechnol Biofuels Bioprod ; 16(1): 3, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609294

RESUMEN

BACKGROUND: Chlorophyll is a very important pigment involved in photosynthesis, while plant acyl-CoA biosynthesis is derived from plastid-localized fatty acids (FAs). Until now, the regulation of the acyl-CoA pathway for chlorophyll biosynthesis is still unknown. RESULTS: Here, we identified a long-chain acyl-CoA synthetase (LACS) gene BnLACS9 from Brassica napus. BnLACS9 complemented a LACS-deficient yeast strain YB525, which indicated that BnLACS9 has the LACS function. BnLACS9 was localized in the chloroplast envelope membrane, while mainly expressed in young leaves and flowers. Overexpression of BnLACS9 in Nicotiana benthamiana resulted in an increase in total CoA and MGDG content. In B. napus with overexpression of BnLACS9, the number of chloroplast grana lamellae and the chlorophyll content, as well as the MGDG and DGDG contents, increased compared to wild type. The net photosynthetic rate, dry weight of the entire plant and oil content of seeds increased significantly, accompanied by an increase in chlorophyll content. Transcriptome analysis revealed that overexpression of BnLACS9 improved the pathway of acyl-CoA biosynthesis and further improved the enzymes in the glycolipid synthesis pathway, while acyl-CoA was the substrate for glycolipid synthesis. The increased glycolipids, especially MGDG and DGDG, accelerated the formation of the chloroplast grana lamellae, which increased the number of chloroplast thylakoid grana lamella and further lead to increased chlorophyll content. CONCLUSIONS: In the present study, we demonstrated that BnLACS9 played a crucial role in glycolipids and chlorophyll biosynthesis in B. napus. The results also provide a new direction and theoretical basis for the improvement of the agronomic traits of plants.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36231463

RESUMEN

Research has shown that personality is associated with anxiety levels in the general population. However, little is known about the relationship between personality and preoperative anxiety and the subsequent health outcomes in patients undergoing surgery. Therefore, this review aimed to identify studies that explored the relationship between personality traits and preoperative anxiety, as well as their association with postoperative outcomes. Existing literature shows that anxiety may play an intermediary role in the relationship between personality and postoperative outcomes. Severe anxiety may partially explain the adverse effects of certain personality traits, such as neuroticism, on postoperative outcomes. However, the relationship between personality traits, preoperative anxiety, and postoperative outcomes remains unclear. Interventions such as clinical evaluation, preoperative counseling, and management strategies can be of great value in identifying and resolving patients' anxiety and negative emotions to improve postoperative outcomes.


Asunto(s)
Ansiedad , Depresión , Ansiedad/psicología , Trastornos de Ansiedad/psicología , Depresión/psicología , Humanos , Personalidad , Inventario de Personalidad
5.
J Immunol Res ; 2022: 3002304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619719

RESUMEN

Demyelinating diseases such as multiple sclerosis (MS) are chronic inflammatory autoimmune diseases and involve demyelination and axonal degeneration. Microglia rapidly respond to changes in the environment by altering morphotype and function during the progressive disease stage. Although substantial progress has been made in the drug development for MS, treatment of the progressive forms of the disease remains unsatisfactory. There is great interest in identifying novel agents for treating MS. Lentinus edodes is a traditional food, which can improve physiological function. Lentinan (LNT), a type of polysaccharide extracted from mushroom Lentinus edodes, is an anti-inflammatory and immunomodulatory agent. Here, we studied the remyelination effects of LNT and its therapeutic target in regulating the functions of neuroinflammation. We found that LNT enhanced remyelination and rescued motor deficiency by regulating dectin-1 receptor to inhibit neuroinflammation and microglial cell transformation. LNT promoted the conversion of microglial cells from the M1 status induced by LPS to the M2 status, enhanced the anti-inflammatory markers IL-10 and BDNF, inhibited inflammatory markers TNF-α and IL-1ß, and downregulated the microglia activation and oligodendrocyte and astrocyte proliferation by modulating dectin-1. If we injected the dectin-1-specific inhibitor laminarin (Lam), the remyelination effects induced by LNT were completely abolished. Thus, these results suggest that LNT is a novel and potential therapeutic agent that can rescue MS neuroimmune imbalance and remyelination through a dectin-1 receptor-dependent mechanism.


Asunto(s)
Remielinización , Hongos Shiitake , Animales , Ratones , Lentinano/farmacología , Lentinano/uso terapéutico , Microglía , Enfermedades Neuroinflamatorias , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613954

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn't been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.


Asunto(s)
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Cistina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
BMC Plant Biol ; 21(1): 286, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157966

RESUMEN

BACKGROUND: Brassica napus is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on Arabidopsis and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed. RESULTS: In our study, we have identified 10 BnaDELLA genes. All of the BnaDELLA genes are closely related to five AtDELLA genes, suggesting a relative function and structure. Gene duplication and synteny relationship among Brassica. napus, Arabidopsis. thaliana, Brassica rapa, Brassica oleracea, and Brassica nigra genomes were also predicted to provide valuable insights into the BnaDELLA gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of BnaDELLA genes on eight chromosomes, and site-specific selection assessment proposes BnaDELLA genes purifying selection. The motifs composition in all BnaDELLA genes is inconsistent; however, every BnaDELLA gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets BnaC07RGA and BnaA09GAI, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the BnaDELLA genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, cis-acting element prediction shows that all BnaDELLA genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the BnaDELLA gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of BnaDELLA genes under biotic and abiotic stresses. CONCLUSION: In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the BnaDELLA gene family in B. napus, which enrich our understanding of BnaDELLA genes in B. napus and suggests modulating individual BnaDELLA expression is a promising way to intensify rapeseed stress tolerance and harvest index.


Asunto(s)
Brassica napus/genética , Genes de Plantas/genética , Brassica napus/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Evolución Molecular , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , MicroARNs/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , ARN de Planta/genética , Alineación de Secuencia , Estrés Fisiológico , Transcriptoma
8.
Clin Neurol Neurosurg ; 203: 106562, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33631507

RESUMEN

BACKGROUNDS: Optic radiation protection is crucial in the basal temporal approach to the mesial temporal lobe. Clear description of the optic radiation in the basal brain surface is lacking. Our aim is to describe the anatomy of optic radiation in the basal cerebral surface and define safety zone of basal temporal approach avoiding of optic radiation injury. METHODS: Five brain specimens (10 hemispheres) were dissected using Klingler method to observe the course of the optic radiation. Diffusion tensor imaging data of 25 volunteers were used to verify the fiber dissection results. The relationship of the optic radiation to nearby structures were illustrated and measured. RESULTS: The optic radiation bends from the lateral wall of the lateral ventricle to its bottom at a basal turning point of optic radiation (bTPOR). The bTPOR is at the plane crossing the center point of the splenium of corpus callosum. MRI measurements showed no significant difference in the distance from the center of the splenium of corpus callosum and the bTPOR to the occipital pole (59.46 ± 4.338 mm vs 59.54 ± 3.805 mm, p = 0.95). Anterior to bTPOR, no optic radiation fibers were found at the basal brain surface. CONCLUSIONS: The bTPOR was found as a landmark of the optic radiation in the cerebral basal surface. With neuronavigation, the splenium of corpus callosum can be a landmark of the bTPOR. By approaching mesial temporal lesions using the basal temporal approach anterior to bTPOR, optic radiation injury can be prevented.


Asunto(s)
Lóbulo Occipital/patología , Lóbulo Temporal/patología , Vías Visuales/patología , Cadáver , Imagen de Difusión Tensora , Disección , Cuerpos Geniculados/diagnóstico por imagen , Cuerpos Geniculados/patología , Humanos , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/patología , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen
9.
Plant Cell Rep ; 40(2): 361-374, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33392730

RESUMEN

KEY MESSAGE: MANNANASE7 gene in Brassica napus L. encodes a hemicellulose which located at cell wall or extracellular space and dehiscence-resistance can be manipulated by altering the expression of MANNANASE7. Silique dehiscence is an important physiological process in plant reproductive development, but causes heavy yield loss in crops. The lack of dehiscence-resistant germplasm limits the application of mechanized harvesting and greatly restricts the rapeseed (Brassica napus L.) production. Hemicellulases, together with cellulases and pectinases, play important roles in fruit development and maturation. The hemicellulase gene MANNANASE7 (MAN7) was previously shown to be involved in the development and dehiscence of Arabidopsis (Arabidopsis thaliana) siliques. Here, we cloned BnaA07g12590D (BnMAN7A07), an AtMAN7 homolog from rapeseed, and demonstrate its function in the dehiscence of rapeseed siliques. We found that BnMAN7A07 was expressed in both vegetative and reproductive organs and significantly highly expressed in leaves, flowers and siliques where the abscission or dehiscence process occurs. Subcellular localization experiment showed that BnMAN7A07 was localized in the cell wall. The biological activity of the BnMAN7A07 protein isolated and purified through prokaryotic expression system was verified to catalyse the decomposition of xylan into xylose. Phenotypic studies of RNA interference (RNAi) lines revealed that down-regulation of BnMAN7A07 in rapeseed could significantly enhance silique dehiscence-resistance. In addition, the expression of upstream silique development regulators is altered in BnMAN7A07-RNAi plants, suggesting that a possible feedback regulation mechanism exists in the regulation network of silique dehiscence. Our results demonstrate that dehiscence-resistance can be manipulated by altering the expression of hemicellulase gene BnMAN7A07, which could provide an available genetic resource for breeding practice in rapeseed which is beneficial to mechanized harvest.


Asunto(s)
Brassica napus/enzimología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Pared Celular/enzimología , Regulación hacia Abajo , Espacio Extracelular/enzimología , Flores/enzimología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/genética , Manosidasas/genética , Manosidasas/metabolismo , Fitomejoramiento , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Front Plant Sci ; 12: 790655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058951

RESUMEN

BRASSINAZOLE RESISTANT (BZR) are transcriptional factors that bind to the DNA of targeted genes to regulate several plant growth and physiological processes in response to abiotic and biotic stresses. However, information on such genes in Brassica napus is minimal. Furthermore, the new reference Brassica napus genome offers an excellent opportunity to systematically characterize this gene family in B. napus. In our study, 21 BnaBZR genes were distributed across 19 chromosomes of B. napus and clustered into four subgroups based on Arabidopsis thaliana orthologs. Functional divergence analysis among these groups evident the shifting of evolutionary rate after the duplication events. In terms of structural analysis, the BnaBZR genes within each subgroup are highly conserved but are distinctive within groups. Organ-specific expression analyses of BnaBZR genes using RNA-seq data and quantitative real-time polymerase chain reaction (qRT-PCR) revealed complex expression patterns in plant tissues during stress conditions. In which genes belonging to subgroups III and IV were identified to play central roles in plant tolerance to salt, drought, and Sclerotinia sclerotiorum stress. The insights from this study enrich our understanding of the B. napus BZR gene family and lay a foundation for future research in improving rape seed environmental adaptability.

11.
Exp Ther Med ; 20(4): 3625-3632, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32855714

RESUMEN

Status epilepticus (SE) is a neurological disorder associated with high morbidity and mortality rates, and is often difficult to treat. Moreover, the underlying mechanism of SE remains unknown. The lithium-pilocarpine model is a validated animal model that can reproduce the main clinical and neuropathological features of SE. In the present study, this SE model was utilized and SE was successfully established in rats, as determined by the corresponding epileptic electroencephalogram. Histology, immunohistochemistry, western blot analysis and co-immunoprecipitation were used to detect the phosphorylation (p-) of AKT substrate of 40 kDa (PRAS40), the combination of p-PRAS40 and 14-3-3 protein and the activation of the PI3K/mTOR signaling pathway in SE. In addition, the present study analyzed the dynamics of the expression of autophagy-associated factors in the hippocampus after SE induction, and the influence of suppressing the p- of PRAS40 on the autophagy process was detected in the pathogenesis of SE. The results indicated that increased p-PRAS40 expression could activate the mTOR pathway to decrease the level of autophagy. However, inhibition of the mTOR signaling pathway promoted autophagy flux. These results may provide further understanding of p-PRAS40 functions in SE.

13.
Genet Mol Biol ; 43(1): e20190305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154828

RESUMEN

Rapeseed is one of important oil crops in China. Better understanding of the regulation network of main agronomic traits of rapeseed could improve the yielding of rapeseed. In this study, we obtained an influrescence mutant that showed a fusion phenotype, similar with the Arabidopsis clavata-like phenotype, so we named the mutant as Bnclavata-like (Bnclv-like). Phenotype analysis illustrated that abnormal development of the inflorescence meristem (IM) led to the fused-inflorescence phenotype. At the stage of protein abundance, major regulators in metabolic processes, ROS metabolism, and cytoskeleton formation were seen to be altered in this mutant. These results not only revealed the relationship between biological processes and inflorescence meristem development, but also suggest bioengineering strategies for the improved breeding and production of Brassica napus.

14.
Plant Cell Rep ; 39(6): 709-722, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32140767

RESUMEN

KEY MESSAGE: The BnaNPR1-like gene family was identified in B. napus, and it was revealed that repression of BnaNPR1 significantly reduces resistance toS. sclerotiorum, intensifies ROS accumulation, and changes the expression of genes associated with SA and JA/ET signaling in response to this pathogen. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and related NPR1-like genes play an important role in regulating plant defense. Oilseed rape (Brassica napus L.) is an important oilseed crop; however, little is known about the B. napus (Bna) NPR1-like gene family. Here, a total of 19 BnaNPR1-like genes were identified in the B. napus genome, and then named according to their respective best match in Arabidopsis thaliana (At), which led to the determination of B. napus homologs of every AtNPR1-like gene. Analysis of important protein domains and functional motifs indicated the conservation and variation among these homologs. Phylogenetic analysis of these BnaNPR1-like proteins and their Arabidopsis homologs revealed six distinct sub-clades, consequently indicating that their name classification totally conformed to their phylogenetic relationships. Further, B. napus transcriptomic data showed that the expression of three BnaNPR1s was significantly down-regulated in response to infection with Sclerotinia sclerotiorum, the most important pathogen of this crop, whereas BnaNPR2/3/4/5/6s did not show the expression differences in general. Further, we generated B. napus BnaNPR1-RNAi lines to interpret the effect of the down-regulated expression of BnaNPR1s on resistance to S. sclerotiorum. The results showed that BnaNPR1-RNAi significantly decreased this resistance. Further experiments revealed that BnaNPR1-RNAi intensified ROS production and changed defense responses in the interaction of plants with this pathogen. These results indicated that S. sclerotiorum might use BnaNPR1 to regulate specific physiological processes of B. napus, such as ROS production and SA defense response, for the infection.


Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antiinfecciosos/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidad , Resistencia a la Enfermedad , Genoma de Planta , Filogenia , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Interferencia de ARN , Alineación de Secuencia , Transcriptoma
15.
Plant Sci ; 291: 110362, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928657

RESUMEN

Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus), resulting in major economic losses. Resistance response of B. napus against S. sclerotiorum exhibits a typical quantitative disease resistance (QDR) characteristic, but the molecular determinants of this QDR are largely unknown. In this study, we isolated a B. napus mitogen-activated protein kinase gene, BnaMPK6, and found that BnaMPK6 expression is highly responsive to infection by S. sclerotiorum and treatment with salicylic acid (SA) or jasmonic acid (JA). Moreover, overexpression (OE) of BnaMPK6 significantly enhances resistance to S. sclerotiorum, whereas RNAi in BnaMPK6 significantly reduces this resistance. These results showed that BnaMPK6 plays an important role in defense to S. sclerotiorum. Furthermore, expression of defense genes associated with SA-, JA- and ethylene (ET)-mediated signaling was investigated in BnaMPK6-RNAi, WT and BnaMPK6-OE plants after S. sclerotiorum infection, and consequently, it was indicated that the activation of ET signaling by BnaMPK6 may play a role in the defense. Further, four BnaMPK6-encoding homologous loci were mapped in the B. napus genome. Using the allele analysis and expression analysis on the four loci, we demonstrated that the locus BnaA03.MPK6 makes an important contribution to QDR against S. sclerotiorum. Our data indicated that BnaMPK6 is a previously unknown determinant of QDR against S. sclerotiorum in B. napus.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Brassica napus/microbiología , Resistencia a la Enfermedad/genética , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia
17.
Plant Biotechnol J ; 18(5): 1255-1270, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693306

RESUMEN

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.


Asunto(s)
Arabidopsis , Ascomicetos , Brassica napus , Arabidopsis/genética , Brassica napus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética
18.
Front Plant Sci ; 10: 1314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681392

RESUMEN

Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.

19.
Plants (Basel) ; 8(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491897

RESUMEN

Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.

20.
Int Immunopharmacol ; 75: 105777, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31357085

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelination disease characterized by autoimmune damage to the central nervous system. In this disease, failure of remyelination could cause persistent disability. Cordycepin, also known as 3'-deoxyadenosine, exerts anti-inflammatory, anti-oxidic, anti-apoptotic and neuroprotective effects. The cuprizone (CPZ) model has been widely used to study MS as it mimics some characteristics of demyelination disease. To determine whether cordycepin promotes remyelination and functional recovery after CPZ-induced demyelination, we administered cordycepin to the CPZ-induced demyelination mice. Cordycepin reversed CPZ-induced loss of body weight and rescued motor dysfunction in the model mice. Cordycepin effectively promoted remyelination and enhanced MBP expression in the corpus callosum. Cordycepin also inhibited the CPZ-induced increase in the number of Iba1-positive microglia, GFAP-positive astrocytes and Olig2-positive oligodendroglial precursor cells in the corpus callosum and cerebral cortex. Pro-inflammatory cytokine expression (IL-1ß and IL-6) was inhibited while anti-inflammatory cytokine IL-4 and neurotrophic factor BDNF release was elevated in the corpus callosum and hippocampus after cordycepin treatment. In addition, we also found that cordycepin ameliorated CPZ-induced body weight loss, motor dysfunction, demyelination, glial cells activation and pro-inflammatory cytokine expression in the corpus callosum and hippocampus. Our results suggest that cordycepin may represent a useful therapeutic agent in demyelination-related diseases via suppression of neuroinflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Desoxiadenosinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Remielinización/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Astrocitos/efectos de los fármacos , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/inmunología , Cuprizona , Citocinas/inmunología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/inmunología , Desoxiadenosinas/farmacología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...