Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(4): 2488-2501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628190

RESUMEN

This study aimed to investigate the beneficial effects of probiotic yogurt on lipid metabolism and gut microbiota in metabolic-related fatty liver disease (MAFLD) golden hamsters fed on a high-fat diet (HFD). The results demonstrated that probiotic yogurt significantly reversed the adverse effects caused by HFD, such as body and liver weight gain, liver steatosis and damage, sterol deposition, and oxidative stress after 8 weeks of intervention. qRT-PCR analysis showed that golden hamsters fed HFD had upregulated genes related to adipogenesis, increased free fatty acid infiltration, and downregulated genes related to lipolysis and very low-density lipoprotein secretion. Probiotic yogurt supplements significantly inhibited HFD-induced changes in the expression of lipid metabolism-related genes. Furthermore, 16S rRNA gene sequencing of the intestinal content microbiota suggested that probiotic yogurt changed the diversity and composition of the gut microbiota in HFD-fed hamsters. Probiotic yogurt decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio, and bacteria involved in lipid metabolism, whereas it increased the relative abundance of short-chain fatty acids producing bacteria in HFD-fed hamsters. Predictive functional analysis of the microbial community showed that probiotic yogurt-modified genes involved in LPS biosynthesis and lipid metabolism. In summary, these findings support the possibility that probiotic yogurt significantly improves HFD-induced metabolic disorders through modulating intestinal microflora and lipid metabolism and effectively regulating the occurrence and development of MAFLD. Therefore, probiotic yogurt supplementation may serve as an effective nutrition strategy for the treatment of patients with MAFLD clinically.

2.
Gastrointest Endosc ; 97(4): 684-693, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36403805

RESUMEN

BACKGROUND AND AIMS: We aimed to establish a modified model of the Kyoto classification score and verify its accuracy for predicting Helicobacter pylori (HP) infection during endoscopy. METHODS: Patients who underwent gastroscopy from June 2020 to March 2021 were included in this study. Atrophy, intestinal metaplasia, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, xanthoma, map-like redness, fundic gland polyp, and regular arrangement of collecting venules (RAC) were recorded according to the Kyoto classification of gastritis. The HP infection status of participants was determined by a 13C breath test, anti-HP antibody, and histopathologic hematoxylin and eosin staining. The modified Kyoto classification scoring model was established based on univariate analysis and logistic regression analysis. The modified scoring model was used to judge the status of HP infection in patients undergoing gastroscopy from July to September 2021 and to evaluate the accuracy of the prediction. RESULTS: Of 667 participants in the derivation dataset, 326 cases had HP infection and 341 cases did not. Atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, and spotty redness were associated with HP current infection. Thus, a new scoring model, termed the modified Kyoto classification scoring model, was constructed that included atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, fundic gland polyp, and RAC as indicators. To test the model, 808 subjects, including 251 HP-positive patients, comprised the validation dataset. CONCLUSIONS: The modified Kyoto classification scoring model improved the accuracy of endoscopic determination of HP current infection and has clinical application potential in the Chinese population.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Gastritis/diagnóstico , Gastritis/patología , Gastroscopía , Mucosa Gástrica/patología , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/patología , Metaplasia/patología , Atrofia/patología
3.
Oxid Med Cell Longev ; 2022: 4557532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355867

RESUMEN

Objective: Hepatic metabolic disorder induced by lipotoxicity plays a detrimental role in metabolic fatty liver disease pathogenesis. Cimifugin (Cim), a coumarin derivative extracted from the root of Saposhnikovia divaricata, possesses multiple biological properties against inflammation, allergy, and oxidative stress. However, limited study has addressed the hepatoprotective role of Cim. Here, we investigate the protective effect of Cim against lipotoxicity-induced cytotoxicity and steatosis in hepatocytes and clarify its potential mechanisms. Methods: AML-12, a nontransformed mouse hepatocyte cell line, was employed in this study. The cells were incubated with palmitate or oleate to imitate hepatotoxicity or steatosis model, respectively. Results: Cim significantly reversed palmitate-induced hepatocellular injury in a dose-dependent manner, accompanied by improvements in oxidative stress and mitochondrial damage. Cim pretreatment reversed palmitate-stimulated TLR4/p38 MAPK activation and SIRT1 reduction without affecting JNK, ERK1/2, and AMPK pathways. The hepatoprotective effects of Cim were abolished either through activating TLR4/p38 by their pharmacological agonists or genetical silencing SIRT1 via special siRNA, indicating a mechanistic involvement. Moreover, Cim treatment improved oleate-induced hepatocellular lipid accumulation, which could be blocked by either TLR4 stimulation or SIRT1 knockdown. We observed that SIRT1 was a potential target of TLR4 in palmitate-treated hepatocytes, since TLR4 agonist LPS aggravated, whereas TLR4 antagonist CLI-095 alleviated palmitate-decreased SIRT1 expression. SIRT1 knockdown did not affect palmitate-induced TLR4. In addition, TLR4 activation by LPS significantly abolished Cim-protected SIRT1 reduction induced by palmitate. These results collaboratively indicated that TLR4-regulated SIRT1 pathways was mechanistically involved in the protective effects of Cim against lipotoxicity. Conclusion: In brief, we demonstrate the protective effects of Cim against lipotoxicity-induced cell death and steatosis in hepatocytes. TLR4-regulated p38 MAPK and SIRT1 pathways are involved in Cim-protected hepatic lipotoxicity. Cim is a potential candidate for improving hepatic metabolic disorders mediated by lipotoxicity.


Asunto(s)
Hígado Graso , Sirtuina 1 , Animales , Cromonas , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Ratones , Sirtuina 1/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Front Pharmacol ; 13: 797499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126160

RESUMEN

Background: Acetaminophen (APAP) overdose results in the production of reactive oxygen species (ROS), induces hepatocyte necrosis, and leads to acute liver failure. Atractylenolide I (AO-I), a phytochemical found in Atractylodes macrocephala Koidz, is known to exhibit antioxidant activity. However, its clinical benefits against drug-induced liver injury remain largely unclear. Purpose: This study aimed at evaluating the protective effects of AO-I against APAP-induced acute liver injury. Methods: C57BL/6 mice were administered 500 mg/kg APAP to induce hepatotoxicity. AO-Ⅰ (60 and 120 mg/kg) was intragastrically administered 2 h before APAP dosing. Liver histopathological changes, oxidative stress and hepatic inflammation markers from each group were observed. Results: We observed that AO-I treatment significantly reversed APAP-induced liver injury, as evidenced by improved plasma alanine transaminase (ALT) level, aspartate aminotransferase (AST) and liver H&E stain. APAP treatment increased liver malondialdehyde (MDA) content and reduced catalase (CAT) and glutathione (GSH) level; however, these effects were alleviated by AO-I intervention. Moreover, AO-I treatment significantly inhibited APAP-induced activation of pro-inflammatory factors, such as IL-1ß, IL-6, and TNF-α, at both the mRNA and protein levels. Mechanistic studies revealed that AO-I attenuated APAP-induced activation of TLR4, NF-κB and MAPKs (including JNK and p38). Conclusion: AO-I mediates protective effects against APAP-induced hepatotoxicity via the TLR4/MAPKs/NF-κB pathways. Thus, AO-I is a candidate therapeutic compound for APAP-induced hepatotoxicity.

5.
Am J Transl Res ; 9(11): 5012-5021, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29218099

RESUMEN

Gliomas are one the most prevalent malignant carcinomas of the central nervous system, and angiogenesis plays a critical role in the progression of these blood vessel-rich tumors. HOTAIR, a long non-coding RNA (lncRNA), acts as an oncogene in gliomas; however, its role in glioma angiogenesis remains unclear. In the present study, we identified a pro-angiogenic activity of HOTAIR. Silencing HOTAIR inhibited glioma-induced endothelial cell proliferation, migration, and tube formation. Further studies showed that vascular endothelial growth factor A (VEGFA) was involved in the HOTAIR-induced glioma angiogenesis. Our study also showed that HOTAIR was present in the glioma cell culture supernatant and was protected by membranes, suggesting that HOTAIR may affect glioma angiogenesis not only via regulation of VEGFA expression in the glioma cells, but also by transmission into endothelial cells via glioma cell-derived extracellular vesicles.

6.
Int Immunopharmacol ; 49: 132-141, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28577437

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and oxidative injury of hepatocytes. Rutin is a natural flavonoid with significant roles in combating cellular oxidative stress and regulating lipid metabolism. The current study aims to investigate the molecular mechanisms underlying rutin's hypolipidemic and hepatoprotective effects in nonalcoholic fatty liver disease. Rutin treatment was applied to male C57BL/6 mice maintained on a high-fat diet and HepG2 cells challenged with oleic acid. Hepatic lipid accumulation was evaluated by triglyceride assay and Oil Red O staining. Oxidative hepatic injury was assessed by malondialdehyde assay, superoxide dismutase assay and reactive oxygen species assay. The expression levels of various lipogenic and lipolytic genes were determined by quantitative real-time polymerase chain reactions. In addition, liver autophagy was investigated by enzyme-linked immunosorbent assay. In both fat-challenged murine liver tissues and HepG2 cells, rutin treatment was shown to significantly lower triglyceride content and the abundance of lipid droplets. Rutin was also found to reduce cellular malondialdehyde level and restore superoxide dismutase activity in hepatocytes. Among the various lipid-related genes, rutin treatment was able to restore the expression of peroxisome proliferator-activated receptor alpha (PPAR-α) and its downstream targets, carnitine palmitoyltransferase 1 and 2 (CPT-1 and CPT-2), while suppressing those of sterol regulatory element-binding protein 1c (SREBP-1c), diglyceride acyltransfase 1 and 2 (DGAT-1 and 2), as well as acyl-CoA carboxylase (ACC). In addition, rutin was shown to repress the autophagic function of liver tissues by down-regulating key autophagy biomarkers, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß). The experimental data demonstrated that rutin could reduce triglyceride content and mitigate oxidative injuries in fat-enriched hepatocytes. The hypolipidemic properties of rutin could be attributed to its ability to simultaneously facilitate fatty acid metabolism and inhibit lipogenesis.


Asunto(s)
Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Rutina/uso terapéutico , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Citoprotección , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Peroxidación de Lípido , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , PPAR alfa/genética , PPAR alfa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Chemosphere ; 168: 568-577, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27838030

RESUMEN

The upcoming energy structure optimization and the implementation of strict emissions control will effectively alleviated the pollution of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. Compared to HMW PAHs, the immune response to low-molecular-weight (LMW) PAHs is recognized as "less harmful", despite the high proportions of these substances. The present study intends to investigate the effects of several of the most abundant LMW PAHs on macrophages RAW264.7 at environmentally relevant doses. The data assembled herein showed that Fluoranthene (Fluo, PAH) formed a π-π interaction with the Phe12 residue of AhR while inhibiting the transcription of CYP1A1 and CYP1B1, and ultimately induced the inflammatory cytokines in RAW264.7. The 1-Nitropyrene (1-Nitro, NPAH) formed both a π-π interaction and a hydrogen bond with AhR, stimulated CYP1A1transcription, while suppressed the cytokine levels. Additionally, the inflammation potency caused by TPAHs was highly correlated with the cytotoxic potency rather than the oxidative stress potency. When stimulated by LPS, the transcription of IL-6 was inhibited by Fluo, and 1-Nitro suppressed both IL-6 and TNFα transcription. Furthermore, only 1-Nitro gave a significant inhibition on phagocytosis. The effects of 9-Fluorenone (9-Fluo, OPAH) on macrophages remained insignificant throughout the study since the low affinity for AhR, which resulted in low cytotoxicity. Collectively, this study suggested that LMW PAHs tended to cause mild inflammation when they bind without activating AhR. During infection, AhR ligands caused immunosuppression and this potency for TPAHs may be higher in AhR activator than that in AhR inactivator.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Citocinas , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Atmosféricos/análisis , Animales , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Fluorenos/análisis , Fluorenos/toxicidad , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , Simulación del Acoplamiento Molecular , Peso Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Fagocitosis/inmunología , Hidrocarburos Policíclicos Aromáticos/análisis , Pirenos/análisis , Pirenos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo
8.
Gastroenterol Res Pract ; 2016: 1360348, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28115926

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent types of malignancies, particularly among individuals aged between 50 and 75. The global incidence of CRC has been steadily on the rise due in no small part to an aging population and a shift in lifestyle as well as eating habits. MicroRNAs are a group of small, noncoding, and endogenous RNA molecules that have recently emerged as key players in a broad range of pathological pathways. Moreover, dysregulation of microRNAs has been implicated in cancer development and metastasis. This review is intended to provide a brief overview of the structure, functions, and clinical roles of microRNAs. In particular, the review will focus on the discovery, the underlying mechanistic roles, and the diagnostic as well as therapeutic potentials of CRC-specific miRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...