Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Hazard Mater ; 472: 134480, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38703683

RESUMEN

The widespread use of polyethylene terephthalate (PET) in various industries has led to a surge in microplastics (MPs) pollution, posing a significant threat to ecosystems and human health. To address this, we have developed a bacterial enzyme cascade reaction system (BECRS) that focuses on the efficient degradation of PET. This system harnesses the Escherichia coli (E. coli) surface to display CsgA protein, which forms curli fibers, along with the carbohydrate-binding module 3 (CBM3) and PETases, to enhance the adsorption and degradation of PET. The study demonstrated that the BECRS achieved a notable PET film degradation rate of 3437 ± 148 µg/(d*cm²), with a degradation efficiency of 21.40% for crystalline PET MPs, and the degradation products were all converted to TPA. The stability of the system was evidenced by retaining over 80% of its original activity after multiple uses and during one month of storage. Molecular dynamics simulations confirmed that the presence of CsgA did not interfere with the enzymatic activity of PETases. This BECRS represents a significant step forward in the biodegradation of PET, particularly microplastics, offering a practical and sustainable solution for environmental pollution control.

2.
Front Immunol ; 15: 1397541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774870

RESUMEN

Aim: Despite the significant therapeutic outcomes achieved in systemic treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality that only a low proportion of patients exhibit an improved objective response rate (ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis (ADCP) immunotherapy is considered the new engine for precision immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk stratification system and screen for relevant targets. Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and identified differentially expressed genes along with their involved functional pathways. A risk scoring model was established by identifying ADCP-related genes with prognostic value through LASSO Cox regression analysis. The risk scoring model was then subjected to evaluations of immune infiltration and immunotherapy relevance, with pan-cancer analysis and in vitro experimental studies conducted on key targets. Results: Building on the research by Kamber RA et al., we identified GYPA, CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These genes demonstrated significant correlations with immune infiltration cells, such as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as well as a close association with clinical pathological staging and patient prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and immunologically relevant across multiple types of cancer. Validation through tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18 inhibited the malignancy capabilities of liver cancer cells. Conclusion: We have identified an ADCP signature in LIHC comprising three genes. Analysis based on a risk scoring model derived from these three genes, coupled with subsequent experimental validation, confirmed the pivotal role of M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical ADCP regulatory target in LIHC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA-Seq , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Pronóstico , Inmunoterapia/métodos , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Análisis de la Célula Individual , Fagocitosis/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Perfilación de la Expresión Génica , Masculino , Claudinas/genética , Femenino , Análisis de Expresión Génica de una Sola Célula
3.
Ann Hematol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722387

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS: Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS: About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS: No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.

4.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723818

RESUMEN

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.

5.
J Affect Disord ; 356: 323-328, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614443

RESUMEN

BACKGROUND: Relative fat mass (RFM) is a novel indicator for measuring body fat. The relationship between RFM and depression was explored using National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018. METHODS: A general statistical description of the population included in the study was performed, and logistic analyses were used to explore the association between body mass index (BMI), waist circumference (WC), RFM and depression. Sensitivity analyses and restricted cubic spline (RCS) were also conducted to investigate the association between RFM and depression. RESULTS: A total of 28,836 participants were included in the study. In multivariate models, all obesity indices were associated with depression (P < 0.001). An increase of 1 SD in BMI, WC, and RFM was associated with a respective increased risk of depression of 2.3 %, 1.0 %, and 3.3 %. Excluding those taking antidepressants, the risk of depression was OR 1.88 (95 % CI: 1.26-2.79) for those with RFM in the highest quartile compared with those in the lowest quartile. After Inverse probability of weighting (IPW), the risk of depression in individuals with RFM in the highest quartile compared with individuals in the lowest quartile was 2.62 (95 % CI: 2.21-3.09). The RCS showed a possible nonlinear relationship between RFM and depression. CONCLUSIONS: RFM is associated with depression, suggesting that attention to RFM may be helpful for depression research.


Asunto(s)
Índice de Masa Corporal , Depresión , Encuestas Nutricionales , Obesidad , Circunferencia de la Cintura , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Depresión/epidemiología , Obesidad/epidemiología , Tejido Adiposo , Estudios Transversales , Factores de Riesgo , Anciano , Adulto Joven
6.
Biotechnol J ; 19(4): e2300584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651247

RESUMEN

The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.


Asunto(s)
Antibacterianos , Deinococcus , Escherichia coli , Peróxido de Hidrógeno , Nanopartículas del Metal , Plata , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Plata/farmacología , Deinococcus/efectos de los fármacos , Nanopartículas del Metal/química , Peróxido de Hidrógeno/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico , Peroxidasa/metabolismo , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38535092

RESUMEN

BACKGROUND: Measurable residual disease (MRD) is an important prognostic indicator of chronic lymphocytic leukemia (CLL). Different flow cytometric panels have been developed for the MRD assessment of CLL in Western countries; however, the application of these panels in China remains largely unexplored. METHODS: Owing to the requirements for high accuracy, reproducibility, and comparability of MRD assessment in China, we investigated the performance of a flow cytometric approach (CD45-ROR1 panel) to assess MRD in patients with CLL. The European Research Initiative on CLL (ERIC) eight-color panel was used as the "gold standard." RESULTS: The sensitivity, specificity, and concordance rate of the CD45-ROR1 panel in the MRD assessment of CLL were 100% (87/87), 88.5% (23/26), and 97.3% (110/113), respectively. Two of the three inconsistent samples were further verified using next-generation sequencing. In addition, the MRD results obtained from the CD45-ROR1 panel were positively associated with the ERIC eight-color panel results for MRD assessment (R = 0.98, p < 0.0001). MRD detection at low levels (≤1.0%) demonstrated a smaller difference between the two methods (bias, -0.11; 95% CI, -0.90 to 0.68) than that at high levels (>1%). In the reproducibility assessment, the bias was smaller at three data points (within 24, 48, and 72 h) in the CD45-ROR1 panel than in the ERIC eight-color panel. Moreover, MRD levels detected using the CD45-ROR1 panel for the same samples from different laboratories showed a strong statistical correlation (R = 0.99, p < 0.0001) with trivial interlaboratory variation (bias, 0.135; 95% CI, -0.439 to 0.709). In addition, the positivity rate of MRD in the bone marrow samples was higher than that in the peripheral blood samples. CONCLUSIONS: Collectively, this study demonstrated that the CD45-ROR1 panel is a reliable method for MRD assessment of CLL with high sensitivity, reproducibility, and reliability.

8.
Carbohydr Polym ; 332: 121884, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431405

RESUMEN

The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 â†’ 3) and (1 â†’ 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 µg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-ß) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.


Asunto(s)
Ascophyllum , COVID-19 , Algas Comestibles , Polisacáridos , Undaria , Humanos , Ascophyllum/química , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , ARN Ribosómico 16S , Undaria/química , Citocinas , Inflamación , Antivirales/farmacología , Antivirales/uso terapéutico
9.
Sleep Breath ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329566

RESUMEN

BACKGROUND: Insomnia is a common sleep disorder with significant negative impacts on emotional states; however, the underlying mechanism of insomnia with comorbid emotional dysregulation remains largely unknown. The salience network (SN) plays an important role in both sleep and emotional regulation. The study aimed to explore the specific alterations in functional connectivity (FC) within the SN in insomnia patients. METHODS: A total of 30 eligible patients with insomnia disorder (ID group) and 30 healthy controls (HC group) underwent resting-state functional magnetic resonance imaging (fMRI) scanning and psychometric assessments. Differences in FC within the SN were examined using seed-based region-to-region connectivity analysis. RESULTS: Compared with healthy controls, patients with insomnia showed increased FC within the SN, mainly between the anterior cingulate cortex (ACC) and right superior frontal gyrus (SFG), the right SFG and right supramarginal gyrus (SMG), and between the right insular (INS) and left SMG (P<0.05). Additionally, significant correlations were observed between increased FC and the Hamilton Depression Rating Scale (HAMD), Pittsburgh Sleep Quality Index (PSQI), and Hamilton Anxiety Rating Scale (HAMA) scores (P<0.05, after Bonferroni correction). CONCLUSIONS: These results suggest that increased FC within the SN may be related to poor sleep quality and negative emotions, highlighting the importance of the SN in the pathophysiological mechanisms of insomnia with comorbid emotional dysregulation.

10.
NPJ Biofilms Microbiomes ; 10(1): 13, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38396001

RESUMEN

Both gut microbiome and microRNAs (miRNAs) play a role in the development of hepatic encephalopathy (HE). However, the functional link between the microbiome and host-derived miRNAs in faeces remains poorly understood. In the present study, patients with HE had an altered gut microbiome and faecal miRNAs compared with patients with chronic hepatitis B. Transferring faeces and faecal miRNAs from patients with HE to the recipient mice aggravated thioacetamide-induced HE. Oral gavage of hsa-miR-7704, a host-derived miRNA highly enriched in faeces from patients with HE, aggravated HE in mice in a microbiome-dependent manner. Mechanistically, hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium longum by suppressing proB. B. longum and its metabolite acetate alleviated HE by inhibiting microglial activation and ammonia production. Our findings reveal the role of miRNA-microbiome axis in HE and suggest that faecal hsa-miR-7704 are potential regulators of HE progression.


Asunto(s)
Bifidobacterium longum , Encefalopatía Hepática , MicroARNs , Animales , Humanos , Ratones , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Heces/microbiología , Encefalopatía Hepática/genética , Encefalopatía Hepática/microbiología , MicroARNs/genética , MicroARNs/metabolismo
11.
J Biomed Opt ; 29(Suppl 1): S11523, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303991

RESUMEN

Significance: Photoacoustic (PA) imaging is an emerging biomedical imaging modality that can map optical absorption contrast in biological tissues by detecting ultrasound signal. Piezoelectric transducers are commonly used in PA imaging to detect the ultrasound signals. However, piezoelectric transducers suffer from low sensitivity when the dimensions are reduced and are easily influenced by electromagnetic interference. To avoid these limitations, various optical ultrasound sensors have been developed and shown their great potential in PA imaging. Aim: Our study aims to summarize recent progress in optical ultrasound sensor technologies and their applications in PA imaging. Approach: The commonly used optical ultrasound sensing techniques and their applications in PA systems are reviewed. The technical advances of different optical ultrasound sensors are summarized. Results: Optical ultrasound sensors can provide wide bandwidth and improved sensitivity with miniatured size, which enables their applications in PA imaging. Conclusions: The optical ultrasound sensors are promising transducers in PA imaging to provide higher-resolution images and can be used in new applications with their unique advantages.


Asunto(s)
Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Ultrasonografía , Diagnóstico por Imagen , Análisis Espectral , Transductores
12.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284886

RESUMEN

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Emodina/farmacología , Emodina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gotas Lipídicas , Transducción de Señal
13.
RSC Adv ; 14(4): 2182-2191, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38213962

RESUMEN

Polyacrylamide gel (PAG) is extensively used as a matrix for biomolecular analysis and fractionation. However, the traditional polymerization catalyst system N,N,N',N'-tetramethylethylenediamine (TEMED)/ammonium persulphate (APS) of PAG presents non-negligible toxicity. Herein, we utilized the green and efficient bio-enzyme horseradish peroxidase (HRP) to catalyze the gel polymerization of polyacrylamide. At the same time, the efficacy of this gel system in separating nucleic acids and proteins was confirmed by applying the gel system in electrophoresis. This study aims to explore a higher biosafety polyacrylamide gel polymerization catalytic system which can be applied to electrophoresis technology. Furthermore, in order to differentiate between the bio-enzymatic catalytic system and the traditional toxic catalytic system during polymerization, aggregation-induced luminescence (AIE) of bovine serum albumin-stabilized gold nanoclusters (BSA-Au NCs) was used to monitor the polymerization reaction of the system. The results indicated that the fluorescence intensity of the polymeric system containing BSA-Au NCs increased with the polymerization of the monomers. Subsequently, we assessed whether certain components of nucleic acid electrophoresis and protein electrophoresis such as sodiumdodecylsulfate (SDS) and TBE buffer (Tris-boric acid, EDTA, pH 8.3) would affect the polymerization of the polyacrylamide gels catalyzed by the biological enzymes. The experimental conditions were also optimized to explore the optimal concentration of the ternary system of HRP, H2O2 and ACAC. Our results suggested that the bioenzyme-catalyzed system could be a feasible alternative to the TEMED/APS-catalyzed system, which also could provide new insights into the methods of monitoring the polymerization system.

14.
Int J Parasitol ; 54(2): 99-107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37774810

RESUMEN

The successful completion of gamete fertilization is essential for malaria parasite transmission, and this process can be targeted by intervention strategies. In this study, we identified a conserved gene (PBANKA_0813300) in the rodent malaria parasite Plasmodium berghei, which encodes a protein of 54 kDa (designated as Pbs54). Localization studies indicated that Pbs54 is associated with the plasma membranes of gametes and ookinetes. Functional studies by gene disruption showed that the Δpbs54 parasites had no defect in asexual proliferation, gametocyte development, or gametogenesis. However, the interactions between male and female gametes were significantly decreased compared with wild-type parasites. The Δpbs54 lines did not show a further reduction in zygote and ookinete numbers during in vitro culture, indicating that the defects were probably restricted to gamete fertilization. Consistent with this finding, mosquitoes fed on Δpbs54-infected mice showed a 30.1% reduction in infection prevalence and a 74.7% reduction in oocyst intensity. Cross-fertilization assay indicated that both male and female gametes were impaired in the Δpbs54 parasites. To evaluate its transmission-blocking potential, we obtained polyclonal antibodies from mice immunized with the recombinant Pbs54 (rPbs54) protein. In vitro assays showed that anti-rPbs54 sera inhibited ookinete formation by 42.7%. Our experiments identified Pbs54 as a fertility factor required for mosquito transmission and a novel candidate for a malaria transmission-blocking vaccine.


Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria , Animales , Femenino , Masculino , Ratones , Anticuerpos Antiprotozoarios , Fertilización , Células Germinativas , Malaria/prevención & control , Proteínas de la Membrana/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes
15.
Food Chem ; 438: 137982, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37979272

RESUMEN

Fecal samples from 20 healthy adults were collected for in vitro fermentation experiments to investigate the effects of combined probiotics on the utilization of grape seed extract in humans. After fermenting for 24 h, short-chain fatty acids, metabolites, and gut microbiota composition were analyzed. Short-chain fatty acids in the grape seed extract probiotics group were significantly higher than those in the grape seed extract group. Probiotics significantly enhanced the conversion and utilization of catechins and epicatechins in grape seed extract group and increased the production of 3-hydroxyphenylacetic acid. The 16S rRNA sequencing results revealed that compound probiotics significantly increased the relative abundance of Lacticaseibacillus, HT002, Bifidobacterium, and Lactobacillus and reduced that of Escherichia-Shigella. Our findings showed considerable individual variability in the metabolic utilization of grape seed extract in humans. The consumption of probiotics appears to significantly enhance the utilization.


Asunto(s)
Extracto de Semillas de Uva , Probióticos , Adulto , Humanos , Polifenoles , ARN Ribosómico 16S , Ácidos Grasos Volátiles/metabolismo
16.
BMC Neurol ; 23(1): 430, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049760

RESUMEN

BACKGROUND: Insomnia disorder (ID) seriously affects people's daily life. Difficulty falling asleep is the most commonly reported complaint in patients with ID. However, the mechanism of prolonged sleep latency (SL) is still obscure. The aim of our present study was to investigate the relationship between prolonged SL and alterations in spontaneous neural activity and brain functional connectivity (FC) in ID patients using functional magnetic resonance imaging (fMRI). METHODS: A total of 52 insomniacs with difficulty falling asleep and 30 matched healthy controls (HCs) underwent resting-state fMRI. The amplitude of low-frequency fluctuation (ALFF) was measured and group differences were compared. The peak areas with significantly different ALFF values were identified as the seed regions to calculate FC to the whole brain. SL was assessed by a wrist actigraphy device in ID patients. The Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Rating Scale (HAMA), and Hyperarousal Scale (HAS) were evaluated in both ID patients and HCs. Finally, correlation analyses were performed between the clinical features and FC/ALFF values. RESULTS: ID patients showed higher PSQI, HAMA, HAS scores than HCs. The functional MRI results indicated increased ALFF value in the left insula and right amygdala and decreased ALFF value in the right superior parietal lobe (SPL) in ID patients. The seed-based FC analysis demonstrated increased FC between the left insula and the bilateral precentral gyrus and FC between the right amygdala and the left posterior cingulate cortex (PCC) in patients with ID. Correlation analysis indicated that the increased FC value of the right amygdala-left PCC was positively correlated with SL measured by actigraphy. CONCLUSION: This study revealed abnormal regional spontaneous fluctuations in the right amygdala, left insula, and right SPL, as well as increased FC in the left insula-precentral and right amygdala-left PCC. Moreover, the prolonged SL was positively correlated with the abnormal FC in the right amygdala-left PCC in ID patients. The current study showed the correlation between prolonged SL and the abnormal function of emotion-related brain regions in ID patients, which may contribute to a better understanding of the neural mechanisms underlying difficulty falling asleep in patients with ID. CLINICAL TRIAL REGISTRATION: http://www.chictr.org.cn ., ChiCTR1800015282. Registered on 20th March 2018.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Emociones
17.
Front Pediatr ; 11: 1276846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155739

RESUMEN

The combination of Bifidobacterium longum and Pediococcus pentosaceus is a clinically effective probiotic formulation for alleviating infantile colic; however, their utilization characteristics and mechanism of action surrounding their combined use of sugar sources remains unclear. Using in vitro simulation technology, this study set up individual and mixed cultures of the two probiotics at unique concentrations, and different types of prebiotics, carbohydrates and polyols were added. Gas and short-chain fatty acid production, substrate utilization, as well as growth of the individual and mixed probiotics were detected at the beginning of fermentation, 24 h, and 48 h. Further, the mechanism of the syntrophic effect of the two probiotics was explored based on their growth characteristics. It was found that neither strain produced gas after 24 h and 48 h of cultivation, but could synergistically utilize fructo oligosaccharides (FOS) when mixed. There was an increasing trend of acetic acid production for B. longum in yeast extract, casitone and fatty acid (YCFA) and FOS medium with increasing of bacterial concentrations at 24 h and 48 h; whereas the trend for P. pentosaceus was less obvious. When bacterial concentrations were >5 billion CFU·g-1, the mixed culture showed significantly lower acetic acid production than B. longum alone. By adding lactic and acetic acids to the YCFA medium and observing P. pentosaceus growth, the results suggested that Pediococcus pentosaceus could use the acetic acid and lactic acid produced by Bifidobacterium longum for growth. When the bacterial concentration was 5 billion CFU·g-1, the acetic acid production of B. longum was significantly higher in the mixed cultures in lactulose, lactose, FOS, galactooligosaccharide, and inulin medium; whereas the reverse was true for culturing in xylitol, carboxymethyl cellulose sodium, and sorbitol medium. Further, the mixed cultures produced significantly more acetic acid than B. longum alone. In summary, through in vitro simulation experiments, the optimal ratio and potential interaction mechanisms between B. longum and P. pentosaceus were revealed here, offers a basis for understanding how the probiotic combinations may improve infant colic symptoms by influencing the gut pH and regulating the gut microbiota mechanisms.

18.
Parasit Vectors ; 16(1): 455, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098083

RESUMEN

BACKGROUND: Despite years of effort to develop an effective vaccine against malaria infection, a vaccine that provides individuals with sufficient protection against malaria illness and death in endemic areas is not yet available. The development of transmission-blocking vaccines (TBVs) is a promising strategy for malaria control. A dual-antigen malaria vaccine targeting both pre- and post-fertilization antigens could effectively improve the transmission-blocking activity of vaccines against the sexual stages of the parasite. METHODS: A chimeric recombinant protein Pb22-Pbg37 (Plasmodium berghei 22-P. berghei G37) composed of 19-218 amino acids (aa) of Pb22 and the N-terminal 26-88 aa of Pbg37 was designed and expressed in the Escherichia coli expression system. The antibody titers of the fusion (Pb22-Pbg37) and mixed (Pb22+Pbg37) antigens, as well as those of Pb22 and Pbg37 single antigens were evaluated by enzyme-linked immunosorbent assay. Immunofluorescence and western blot assays were performed to test the reactivity of the antisera with the native proteins in the parasite. The induction of transmission-blocking activity (TBA) by Pb22-Pbg37 and Pb22+Pbg37 were evaluated by in vitro gametocyte activation, gamete and exflagellation center formation, ookinete conversion, and in the direct mosquito feeding assay. RESULTS: The Pb22-Pbg37 fusion protein was successfully expressed in vitro. Co-administration of Pb22 and Pbg37 as a fusion or mixed protein elicited comparable antibody responses in mice and resulted in responses to both antigens. Most importantly, both the mixed and fusion antigens induced antibodies with significantly higher levels of TBA than did each of the individual antigens when administered alone. In addition, the efficacy of vaccination with the Pb22-Pbg37 fusion protein was equivalent to that of vaccination with the mixed single antigens. CONCLUSIONS: Dual-antigen vaccines, which expand/lengthen the period during which the transmission-blocking antibodies can act during sexual-stage development, can provide a promising higher transmission-reducing activity compared to single antigens.


Asunto(s)
Vacunas contra la Malaria , Malaria , Ratones , Animales , Vacunas contra la Malaria/genética , Proteínas Protozoarias/metabolismo , Malaria/parasitología , Vacunación , Proteínas Recombinantes , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Plasmodium falciparum
19.
Infect Dis Ther ; 12(11): 2595-2609, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37856013

RESUMEN

INTRODUCTION: A pan-genotypic and effective treatment regimen for patients with chronic hepatitis C virus (HCV) infection remains an unmet medical need in China. Alfosbuvir is a novel potent HCV NS5B polymerase inhibitor in development for the treatment of chronic HCV infection. We conducted a phase 3 study to evaluate the efficacy and safety of alfosbuvir in combination with daclatasvir in Chinese patients with HCV infection. METHODS: All patients received 600 mg alfosbuvir tablets plus 60 mg daclatasvir tablets once daily for 12 weeks. The primary endpoint was sustained virological response 12 weeks after the end of treatment (SVR12). A follow-up visit was done at week 4 and 12, and those who achieved SVR12 were followed up at post-treatment week 24. RESULTS: Of the 326 patients who received at least one dose of the study drug, 320 (98.2% [95% confidence interval (CI): 96.5%-99.5%]) achieved sustained virological response at post-treatment week 12 (SVR12), which was superior to the historical SVR12 rate of 88% (p < 0.0001). The SVR12 rates were similar regardless of most baseline characteristics. The most common adverse event (AE) (≥ 10%) was hypercholesterolemia. Serious adverse events (SAEs) were reported in 25 (7.7%) patients, none of which was judged to be related to the study drug. The majority of AEs were mild to moderate in severity. CONCLUSIONS: Alfosbuvir plus daclatasvir for 12 weeks was highly effective and safe in Chinese patients infected with HCV genotype 1, 2, 3, or 6, suggesting that this regimen could be a promising option for HCV treatment in China irrespective of genotype. TRIAL REGISTRATION: ClinicalTrial.gov identifier, NCT04070235.

20.
Int J Biol Macromol ; 253(Pt 3): 126860, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37716665

RESUMEN

Atractylodes chinensis (DC.) Koidz. polysaccharide (AKP) has been shown to have hypoglycemic activity. In this study, the effects of AKP on fecal microbiota and metabolites in healthy subjects and patients with type 2 diabetes mellitus (T2DM) were investigated using an in vitro simulated digestive fermentation model. AKP were isolated and purified from Atractylodes chinensis (DC.) Koidz. Its main component AKP1 (AKP-0 M, about 78 % of AKP) has an average molecular weight of 3.25 kDa with monosaccharide composition of rhamnose, arabinose, and galactosamine in a molar ratio of 1: 1.25: 2.88. Notably, AKP fermentation might improve the intestinal microbiota of T2DM patients by the enrichment of some specific bacteria rather than the increase of microbial diversity. The addition of AKP specifically enriched Bifidobacteriaceae and weakened the proportion of Escherichia-Shigella. Moreover, AKP also increased the levels of short-chain fatty acids without affecting total gut gas production, suggesting that AKP could have beneficial effects while avoiding flatulence. Metabolomic analysis revealed that ARP fermentation caused changes in some metabolites, which were mainly related to energy metabolism and amino acid metabolism. Importantly, ARP fermentation significantly increased the level of myo-inositol, an insulin sensitizer. In addition, a significant correlation was observed between specific microbiota and differential metabolites. This study has laid a theoretical foundation for AKP application in functional foods.


Asunto(s)
Atractylodes , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , Atractylodes/química , Fermentación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA