Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2317893121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346183

RESUMEN

Physics-based simulation methods can grant atomistic insights into the molecular origin of the function of biomolecules. However, the potential of such approaches has been hindered by their low efficiency, including in the design of selective agonists where simulations of myriad protein-ligand combinations are necessary. Here, we describe an automated input-free path searching protocol that offers (within 14 d using Graphics Processing Unit servers) a minimum free energy path (MFEP) defined in high-dimension configurational space for activating sphingosine-1-phosphate receptors (S1PRs) by arbitrary ligands. The free energy distributions along the MFEP for four distinct ligands and three S1PRs reached a remarkable agreement with Bioluminescence Resonance Energy Transfer (BRET) measurements of G-protein dissociation. In particular, the revealed transition state structures pointed out toward two S1PR3 residues F263/I284, that dictate the preference of existing agonists CBP307 and BAF312 on S1PR1/5. Swapping these residues between S1PR1 and S1PR3 reversed their response to the two agonists in BRET assays. These results inspired us to design improved agonists with both strong polar head and bulky hydrophobic tail for higher selectivity on S1PR1. Through merely three in silico iterations, our tool predicted a unique compound scaffold. BRET assays confirmed that both chiral forms activate S1PR1 at nanomolar concentration, 1 to 2 orders of magnitude less than those for S1PR3/5. Collectively, these results signify the promise of our approach in fine agonist design for G-protein-coupled receptors.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de Lisoesfingolípidos , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato , Proteínas de Unión al GTP , Mediciones Luminiscentes
2.
Cell Discov ; 9(1): 118, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38012147

RESUMEN

Hydroxycarboxylic acid receptor 2 (HCAR2) belongs to the family of class A G protein-coupled receptors with key roles in regulating lipolysis and free fatty acid formation in humans. It is deeply involved in many pathophysiological processes and serves as an attractive target for the treatment of cardiovascular, neoplastic, autoimmune, neurodegenerative, inflammatory, and metabolic diseases. Here, we report four cryo-EM structures of human HCAR2-Gi1 complexes with or without agonists, including the drugs niacin (2.69 Å) and acipimox (3.23 Å), the highly subtype-specific agonist MK-6892 (3.25 Å), and apo form (3.28 Å). Combined with molecular dynamics simulation and functional analysis, we have revealed the recognition mechanism of HCAR2 for different agonists and summarized the general pharmacophore features of HCAR2 agonists, which are based on three key residues R1113.36, S17945.52, and Y2847.43. Notably, the MK-6892-HCAR2 structure shows an extended binding pocket relative to other agonist-bound HCAR2 complexes. In addition, the key residues that determine the ligand selectivity between the HCAR2 and HCAR3 are also illuminated. Our findings provide structural insights into the ligand recognition, selectivity, activation, and G protein coupling mechanism of HCAR2, which shed light on the design of new HCAR2-targeting drugs for greater efficacy, higher selectivity, and fewer or no side effects.

3.
Proc Natl Acad Sci U S A ; 120(11): e2214324120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881626

RESUMEN

Chemerin is a processed protein that acts on G protein-coupled receptors (GPCRs) for its chemotactic and adipokine activities. The biologically active chemerin (chemerin 21-157) results from proteolytic cleavage of prochemerin and uses its C-terminal peptide containing the sequence YFPGQFAFS for receptor activation. Here we report a high-resolution cryo-electron microscopy (cryo-EM) structure of human chemerin receptor 1 (CMKLR1) bound to the C-terminal nonapeptide of chemokine (C9) in complex with Gi proteins. C9 inserts its C terminus into the binding pocket and is stabilized through hydrophobic interactions involving its Y1, F2, F6, and F8, as well as polar interactions between G4, S9, and several amino acids lining the binding pocket of CMKLR1. Microsecond scale molecular dynamics simulations support a balanced force distribution across the whole ligand-receptor interface that enhances thermodynamic stability of the captured binding pose of C9. The C9 interaction with CMKLR1 is drastically different from chemokine recognition by chemokine receptors, which follow a two-site two-step model. In contrast, C9 takes an "S"-shaped pose in the binding pocket of CMKLR1 much like angiotensin II in the AT1 receptor. Our mutagenesis and functional analyses confirmed the cryo-EM structure and key residues in the binding pocket for these interactions. Our findings provide a structural basis for chemerin recognition by CMKLR1 for the established chemotactic and adipokine activities.


Asunto(s)
Adipoquinas , Quimiocinas , Receptores de Quimiocina , Humanos , Membrana Celular , Quimiocinas/metabolismo , Microscopía por Crioelectrón , Receptores de Quimiocina/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498954

RESUMEN

Bacteriophage T4 lysozyme (T4L) is a glycosidase that is widely applied as a natural antimicrobial agent in the food industry. Due to its wide applications and small size, T4L has been regarded as a model system for understanding protein dynamics and for large-scale protein engineering. Through structural insights from the single conformation of T4L, a series of mutations (L99A,G113A,R119P) have been introduced, which have successfully raised the fractional population of its only hydrolysis-competent excited state to 96%. However, the actual impact of these substitutions on its dynamics remains unclear, largely due to the lack of highly efficient sampling algorithms. Here, using our recently developed travelling-salesman-based automated path searching (TAPS), we located the minimum-free-energy path (MFEP) for the transition of three T4L mutants from their ground states to their excited states. All three mutants share a three-step transition: the flipping of F114, the rearrangement of α0/α1 helices, and final refinement. Remarkably, the MFEP revealed that the effects of the mutations are drastically beyond the expectations of their original design: (a) the G113A substitution not only enhances helicity but also fills the hydrophobic Cavity I and reduces the free energy barrier for flipping F114; (b) R119P barely changes the stability of the ground state but stabilizes the excited state through rarely reported polar contacts S117OG:N132ND2, E11OE1:R145NH1, and E11OE2:Q105NE2; (c) the residue W138 flips into Cavity I and further stabilizes the excited state for the triple mutant L99A,G113A,R119P. These novel insights that were unexpected in the original mutant design indicated the necessity of incorporating path searching into the workflow of rational protein engineering.


Asunto(s)
Bacteriófago T4 , Glicósido Hidrolasas , Bacteriófago T4/genética , Estructura Secundaria de Proteína , Interacciones Hidrofóbicas e Hidrofílicas , Glicósido Hidrolasas/genética , Mutación , Conformación Proteica
5.
Front Immunol ; 13: 871742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159822

RESUMEN

Background: Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The ECM has been recognized as an important determinant of breast cancer progression and prognosis. Recent studies have revealed a strong link between ECM remodeling and immune cell infiltration in a variety of tumor types. However, the landscape and specific regulatory mechanisms between ECM and immune microenvironment in breast cancer have not been fully understood. Methods: Using genomic data and clinical information of breast cancer patients obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we conducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of the ECM microenvironment. Masson and Sirius red staining were applied to quantify the contents of collagen in the ECM microenvironment. Tissue immunofluorescence (IF) staining was applied to identify T helper (Th) cells. Results: We classified breast cancer patients into two ECM-clusters and three gene-clusters by consensus clustering. Significant heterogeneity in prognosis and immune cell infiltration have been found in these distinct clusters. Specifically, in the ECM-cluster with better prognosis, the expression levels of Th2 and regulatory T (Treg) cells were reduced, while the Th1, Th17 and T follicular helper (Tfh) cells-associated activities were significantly enhanced. The correlations between ECM characteristics and Th cells infiltration were then validated by clinical tissue samples from our hospital. The ECM-associated prognostic model was then constructed by 10 core prognostic genes and stratified breast cancer patients into two risk groups. Kaplan-Meier analysis showed that the overall survival (OS) of breast cancer patients in the high-risk group was significantly worse than that of the low-risk group. The risk scores for breast cancer patients obtained from our prognostic model were further confirmed to be associated with immune cell infiltration, tumor mutation burden (TMB) and stem cell indexes. Finally, the half-maximal inhibitory concentration (IC50) values of antitumor agents for patients in different risk groups were calculated to provide references for therapy targeting distinct ECM characteristics. Conclusion: Our findings identify a novel strategy for breast cancer subtyping based on the ECM characterization and reveal the regulatory roles of Th cells in ECM remodeling. Targeting ECM remodeling and Th cells hold potential to be a therapeutic alternative for breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Pronóstico , Células Th17/patología , Microambiente Tumoral
6.
Nat Commun ; 13(1): 5232, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064945

RESUMEN

The formyl peptide receptor 1 (FPR1) is primarily responsible for detection of short peptides bearing N-formylated methionine (fMet) that are characteristic of protein synthesis in bacteria and mitochondria. As a result, FPR1 is critical to phagocyte migration and activation in bacterial infection, tissue injury and inflammation. How FPR1 distinguishes between formyl peptides and non-formyl peptides remains elusive. Here we report cryo-EM structures of human FPR1-Gi protein complex bound to S. aureus-derived peptide fMet-Ile-Phe-Leu (fMIFL) and E. coli-derived peptide fMet-Leu-Phe (fMLF). Both structures of FPR1 adopt an active conformation and exhibit a binding pocket containing the R2015.38XXXR2055.42 (RGIIR) motif for formyl group interaction and receptor activation. This motif works together with D1063.33 for hydrogen bond formation with the N-formyl group and with fMet, a model supported by MD simulation and functional assays of mutant receptors with key residues for recognition substituted by alanine. The cryo-EM model of agonist-bound FPR1 provides a structural basis for recognition of bacteria-derived chemotactic peptides with potential applications in developing FPR1-targeting agents.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Staphylococcus aureus , Factores Quimiotácticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , N-Formilmetionina Leucil-Fenilalanina/química , Neutrófilos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Péptidos/metabolismo , Staphylococcus aureus/metabolismo
7.
Front Immunol ; 13: 859581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795662

RESUMEN

Background: The therapeutic effect of immune checkpoint inhibitors on tumors is not only related to CD8+ effector T cells but also sufficiently related to CD4+ helper T (TH) cells. The immune characteristics of breast cancer, including gene characteristics and tumor-infiltrating lymphocytes, have become significant biomarkers for predicting prognosis and immunotherapy response in recent years. Methods: Breast cancer samples from The Cancer Genome Atlas (TCGA) database and triple-negative breast cancer (TNBC) samples from GSE31519 in the Gene Expression Omnibus (GEO) database were extracted and clustered based on gene sets representing TH cell signatures. CIBERSORT simulations of immune cell components in the tumor microenvironment and gene set enrichment analyses (GSEAs) were performed in the different clusters to verify the classification of the subtypes. The acquisition of differentially expressed genes (DEGs) in the different clusters was further used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The clinical information from different clusters was used for survival analysis. Finally, the surgical tissues of TNBC samples were stained by immunofluorescence staining and Masson's trichrome staining to explore the correlation of TH cell subtypes with extracellular matrix (ECM). Results: The breast cancer samples from the datasets in TCGA database and GEO database were classified into TH-activated and TH-silenced clusters, which was verified by the immune cell components and enriched immune-related pathways. The DEGs of TH-activated and TH-silenced clusters were obtained. In addition to TH cells and other immune-related pathways, ECM-related pathways were found to be enriched by DEGs. Furthermore, the survival data of TCGA samples and GSE31519 samples showed that the 10-year overall survival (p-value < 0.001) and 10-year event-free survival (p-value = 0.162) of the TH-activated cluster were better, respectively. Fluorescent labeling of TH cell subtypes and staining of the collagen area of surgical specimens further illustrated the relationship between TH cell subtypes and ECM in breast cancer, among which high TH1 infiltration was related to low collagen content (p-value < 0.001), while high TH2 and Treg infiltration contained more abundant collagen (p-value < 0.05) in TNBC. With regard to the relationship of TH cell subtypes, TH2 was positively correlated with Treg (p-value < 0.05), while TH1 was negatively correlated with both of them. Conclusions: The immune and ECM characteristics of breast cancer subtypes based on TH cell characteristics were revealed, and the relationship between different TH cell subsets and ECM and prognosis was explored in this study. The crosstalk between ECM and TH cell subtypes formed a balanced TME influencing the prognosis and treatment response in breast cancer, which suggests that the correlation between TH cells and ECM needs to be further emphasized in future breast cancer studies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Matriz Extracelular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Linfocitos T Colaboradores-Inductores , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral
8.
Front Immunol ; 13: 904418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774776

RESUMEN

Background: Triple negative breast cancer (TNBC) is characterized by poor prognosis and a lack of effective therapeutic agents owing to the absence of biomarkers. A high abundance of tumor-infiltrating regulatory T cells (Tregs) was associated with worse prognosis in malignant disease. Exploring the association between Treg cell infiltration and TNBC will provide new insights for understanding TNBC immunosuppression and may pave the way for developing novel immune-based treatments. Materials and Methods: Patients from TCGA were divided into Treg-high (Treg-H) and Treg-low (Treg-L) groups based on the abundance of Tregs according to CIBERSORT analysis. The association between expression level of Tregs and the clinical characteristics as well as prognosis of breast cancer were evaluated. Next, a Treg-related prognostic model was established after survival-dependent univariate Cox and LASSO regression analysis, companied with an external GEO cohort validation. Then, GO, KEGG and GSEA analyses were performed between the Treg-H and Treg-L groups. Masson and Sirius red/Fast Green staining were applied for ECM characterization. Accordingly, Jurkat T cells were encapsulated in 3D collagen to mimic the ECM microenvironment, and the expression levels of CD4, FOXP3 and CD25 were quantified according to immunofluorescence staining. Results: The expression level of Tregs is significantly associated with the clinical characteristics of breast cancer patients, and a high level of Treg cell expression indicates a poor prognosis in TNBC. To further evaluate this, a Treg-related prognostic model was established that accurately predicted outcomes in both TCGA training and GEO validation cohorts of TNBC patients. Subsequently, ECM-associated signaling pathways were identified between the Treg-H and Treg-L groups, indicating the role of ECM in Treg infiltration. Since we found increasing collagen concentrations in TNBC patients with distant migration, we encapsulated Jurkat T cells within a 3D matrix with different collagen concentrations and observed that increasing collagen concentrations promoted the expression of Treg biomarkers, supporting the regulatory role of ECM in Treg infiltration. Conclusion: Our results support the association between Treg expression and breast cancer progression as well as prognosis in the TNBC subtype. Moreover, increasing collagen density may promote Treg infiltration, and thus induce an immunosuppressed TME.


Asunto(s)
Linfocitos T Reguladores , Neoplasias de la Mama Triple Negativas , Biomarcadores/metabolismo , Colágeno/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos T Reguladores/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
9.
J Chem Inf Model ; 62(13): 3213-3226, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35708296

RESUMEN

Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.


Asunto(s)
ADN Glicosilasas , Dominio Catalítico , ADN/química , ADN Glicosilasas/química , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Humanos
10.
Front Genet ; 13: 905617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754838

RESUMEN

Background: In the absence of targeted therapy or clear clinically relevant biomarkers, neoadjuvant chemotherapy (NAC) is still the standard neoadjuvant systemic therapy for breast cancer. Among the many biomarkers predicting the efficacy of NAC, immune-related biomarkers, such as immune-related genes and tumor-infiltrating lymphocytes (TILs), play a key role. Methods: We analyzed gene expression from several datasets in the Gene Expression Omnibus (GEO) database and evaluated the relative proportion of immune cells using the CIBERSORT method. In addition, mIHC/IF detection was performed on clinical surgical specimens of triple-negative breast cancer patients after NAC. Results: We obtained seven immune-related genes, namely, CXCL1, CXCL9, CXCL10, CXCL11, IDO1, IFNG, and ORM1 with higher expression in the pathological complete response (pCR) group than in the non-pCR group. In the pCR group, the levels of M1 and γδT macrophages were higher, while those of the M2 macrophages and mast cells were lower. After NAC, the proportions of M1, γδT cells, and resting CD4 memory T cells were increased, while the proportions of natural killer cells and dendritic cells were decreased with downregulated immune-related genes. The results of mIHC/IF detection and the prognostic information of corresponding clinical surgical specimens showed the correlation of proportions of natural killer cells, CD8-positive T cells, and macrophages with different disease-free survival outcomes. Conclusion: The immune-related genes and immune cells of different subtypes in the tumor microenvironment are correlated with the response to NAC in breast cancer, and the interaction between TILs and NAC highlights the significance of combining NAC with immunotherapy to achieve better clinical benefits.

11.
Gland Surg ; 11(4): 720-741, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531108

RESUMEN

Background: Growing evidence proved that signal transducer and activators of transcription (STAT) proteins are cytoplasmic transcription factors known to play key roles in many cellular biological processes and may be prognostic predictors of some cancers. However, the role of each STAT family members in breast cancer (BRCA) is diverse and controversial. This study aimed to systematic mine the prognostic significance and immune infiltration of STAT family member in human BRCA. Methods: Based on The Cancer Genome Atlas (TCGA) database, we used the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA) and The Human Protein Atlas to analyze the expression of STAT family members in normal human breast and tumor tissues. The Kaplan-Meier Plotter, GEPIA and PrognoScan were utilized to assess the prognostic value of different STATs in BRCA. Then we used the cBioPortal, STRING, GeneMANIA and Metascape to make further mutation analysis, protein-protein interaction (PPI) analysis and subsequent functional enrichment analysis. Finally, the "ESTIMATE" and "ggcorrplot" package of R 17 software were used for immune infiltration analysis. Results: STAT2 [P<0.01, hazard ratio (HR) =1.23, 95% confidence interval (CI): 1.07-1.42] and STAT3 (P=0.018, HR =0.69, 95% CI: 0.51-0.94) could be an independent risk factor for predicting overall survival (OS). STAT4 could be used as an independent predictor of distant metastasis-free survival in BRCA based on both GSE19615 (P=0.021, HR =0.21, 95% CI: 0.06-0.79) and GSE2034 (P=0.015, HR =0.57, 95% CI: 0.37-0.90) datasets. Meanwhile, STAT5A, STAT5B and STAT6 also have been shown to independently predict the prognosis of BRCA. Additionally, the functional mechanisms of STAT4 co-expressed genes were mainly focused on immune-related pathways and its expression was associated with immune checkpoint-associated genes and immunomodulators in BRCA. Conclusions: Our study mined the prognostic significance of STAT family members in BRCA and their correlation with immune infiltration. The results suggest that individual STATs, except STAT1, may act as a prognostic biomarker for BRCA and provide a reference for further potential immunotherapies.

12.
Proc Natl Acad Sci U S A ; 119(16): e2117716119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412894

RESUMEN

As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.


Asunto(s)
Moduladores de los Receptores de fosfatos y esfingosina 1 , Receptores de Esfingosina-1-Fosfato , Colitis Ulcerosa/tratamiento farmacológico , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Organofosfatos/química , Organofosfatos/farmacología , Organofosfatos/uso terapéutico , Unión Proteica , Conformación Proteica en Hélice alfa , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacología , Esfingosina/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/química , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/química
13.
Int J Biol Sci ; 18(5): 2032-2046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342346

RESUMEN

Background: The progressive, multifactorial and multistep dynamic process of metastasis is the primary cause of breast cancer (BC) lethality. PROX1 (Prospero-related homeobox 1), as a type of transcription factor that plays a key role in the formation of lymphatic vessels in animal embryonic development, has been proven to promote or suppress cancer in a variety of malignant tumors. However, molecular mechanisms behind PROX1 induced breast cancer metastases remain elusive. Methods: Changes of PROX1 expression and clinical significance of PROX1 in BC were evaluated by BC tissue, as well as public database. The functional role of PROX1 in metastases BC was analyzed by transwell assay in vitro, and by lung metastases model of nude mice in vivo via lentivirus mediated knockdown assays. Mechanism studies were performed by public database screening, western blot and PCR assay, immunoprecipitation, immunofluorescence staining and luciferase promoter assays. Results: In this study, we found that PROX1 was upregulated in breast cancer tissues; increased PROX1 expression in breast cancer was associated with tumor size, lymph node metastasis, ER and PR status. Meanwhile, PROX1 can promote breast cancer invasion and metastasis in vitro and in vivo. Furthermore, PROX1 can interact with hnRNPK to activate WNT/ß-catenin signaling in breast cancer cells. Moreover, the interaction of PROX1 and hnRNPK inhibits the ubiquitination of hnRNPK, and subsequently activates WNT pathway to promote the invasion and metastasis of breast cancer. Conclusions: In conclusion, our findings indicated PROX1 contributes to breast cancer EMT and metastasis and serves as a candidate diagnostic biomarker and promising therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Vía de Señalización Wnt , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas de Homeodominio , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
Cell Death Dis ; 13(1): 71, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064101

RESUMEN

Cancer stem cells (CSCs) are regarded as the root of tumor recurrence and distant metastasis, as well as the major cause of resistance to conventional cancer therapies. Elucidating the mechanism of regulating CSCs is of great significance for the development of CSCs-targeting therapy strategies. YAP/TAZ are identified as key regulators of CSCs-related traits on breast cancer cells; however, the upstream regulatory mechanism of Hippo kinases cascade involved in regulating YAP/TAZ remains elusive. In this study, we found that the low expression of RICH1 in breast cancer was associated with poor prognosis. Depletion of RICH1 promoted the stemness and disrupted the normal epithelial architecture of MCF10A cells. Besides, RICH1 inhibited the migration and invasion of breast cancer cells and sensitized these cells to chemotherapeutic drugs. Mechanistically, RICH1 activated the kinases cascade of Hippo signaling via displacing Amot-p80 from the complex with Merlin. Further studies revealed that the deletion of the BAR domain of RICH1 abolished the function of attenuating the binding of Amot-p80 and Merlin, illustrating that the competitive binding to Amot-p80 with Merlin was mediated by the BAR domain of RICH1. In conclusion, our work elucidated the role and molecular mechanism of RICH1 in stemness regulation of breast cancer, and might provide opportunities for CSCs-targeting therapy.


Asunto(s)
Neoplasias de la Mama , Proteínas Activadoras de GTPasa/metabolismo , Neurofibromina 2 , Angiomotinas , Neoplasias de la Mama/patología , Femenino , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Transducción de Señal/fisiología
15.
Nucleic Acids Res ; 50(D1): D460-D470, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850155

RESUMEN

The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.


Asunto(s)
Péptidos Antimicrobianos , Bases de Datos Factuales , Programas Informáticos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Genómica , Sistemas de Lectura Abierta , Conformación Proteica , Proteómica
16.
Nucleic Acids Res ; 50(D1): D222-D230, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850920

RESUMEN

MicroRNAs (miRNAs) are noncoding RNAs with 18-26 nucleotides; they pair with target mRNAs to regulate gene expression and produce significant changes in various physiological and pathological processes. In recent years, the interaction between miRNAs and their target genes has become one of the mainstream directions for drug development. As a large-scale biological database that mainly provides miRNA-target interactions (MTIs) verified by biological experiments, miRTarBase has undergone five revisions and enhancements. The database has accumulated >2 200 449 verified MTIs from 13 389 manually curated articles and CLIP-seq data. An optimized scoring system is adopted to enhance this update's critical recognition of MTI-related articles and corresponding disease information. In addition, single-nucleotide polymorphisms and disease-related variants related to the binding efficiency of miRNA and target were characterized in miRNAs and gene 3' untranslated regions. miRNA expression profiles across extracellular vesicles, blood and different tissues, including exosomal miRNAs and tissue-specific miRNAs, were integrated to explore miRNA functions and biomarkers. For the user interface, we have classified attributes, including RNA expression, specific interaction, protein expression and biological function, for various validation experiments related to the role of miRNA. We also used seed sequence information to evaluate the binding sites of miRNA. In summary, these enhancements render miRTarBase as one of the most research-amicable MTI databases that contain comprehensive and experimentally verified annotations. The newly updated version of miRTarBase is now available at https://miRTarBase.cuhk.edu.cn/.


Asunto(s)
Regiones no Traducidas 3' , Bases de Datos de Ácidos Nucleicos , Redes Reguladoras de Genes , MicroARNs/genética , Neoplasias/genética , ARN no Traducido/genética , Animales , Sitios de Unión , Biomarcadores/metabolismo , Minería de Datos/estadística & datos numéricos , Exosomas/química , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Internet , Ratones , MicroARNs/clasificación , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Neoplasias/metabolismo , Neoplasias/patología , Polimorfismo de Nucleótido Simple , ARN no Traducido/clasificación , ARN no Traducido/metabolismo , Células Tumorales Cultivadas , Interfaz Usuario-Computador
17.
Commun Biol ; 4(1): 1345, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848812

RESUMEN

Despite its functional importance, the molecular mechanism underlying target mRNA recognition by Argonaute (Ago) remains largely elusive. Based on extensive all-atom molecular dynamics simulations, we constructed quasi-Markov State Model (qMSM) to reveal the dynamics during recognition at position 6-7 in the seed region of human Argonaute 2 (hAgo2). Interestingly, we found that the slowest mode of motion therein is not the gRNA-target base-pairing, but the coordination of the target phosphate groups with a set of positively charged residues of hAgo2. Moreover, the ability of Helix-7 to approach the PIWI and MID domains was found to reduce the effective volume accessible to the target mRNA and therefore facilitate both the backbone coordination and base-pair formation. Further mutant simulations revealed that alanine mutation of the D358 residue on Helix-7 enhanced a trap state to slow down the loading of target mRNA. Similar trap state was also observed when wobble pairs were introduced in g6 and g7, indicating the role of Helix-7 in suppressing non-canonical base-paring. Our study pointed to a general mechanism for mRNA recognition by eukaryotic Agos and demonstrated the promise of qMSM in investigating complex conformational changes of biomolecular systems.


Asunto(s)
Proteínas Argonautas/genética , ARN Mensajero/metabolismo , Proteínas Argonautas/metabolismo , Cadenas de Markov , Simulación de Dinámica Molecular
18.
Front Oncol ; 11: 764204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956886

RESUMEN

BACKGROUND: Breast cancer progression has been gradually recognized as a bidirectional interaction between cancer cells and tumor microenvironment including stroma cells, immune cells, and the dynamically altered ECM. However, there still lacks direct experimental evidences about how ECM properties modulate the activities of stroma and immune cells. METHOD: The transcriptomic data and corresponding clinical information of breast cancer pawere obtained from TCGA. Patients were divided into ECM-high, ECM-median and ECM-low groups based on ssGSEA scores of C-ECM genes. The prognostic value of ECM was confirmed by univariate/multivariate Cox regression and survival analyses. GO and KEGG analyses were performed between ECM-high and -low groups. Then associations between ECM characteristics and clinical stages were verified by Masson's trichrome and Sirius red/Fast Green staining of clinical breast cancer tissues. To evaluate the effects of ECM on CAF induction and T cell activation, the MRC-5, NIH/3T-3, primary T cells and Jurkat T cells were encapsulated in 3D collagen with different densities and organizations, and the expression levels of CAF biomarkers and secretion levels of IL-2 were assessed. RESULTS: ECM scores showed broad variation across paracancerous and cancer samples as well as breast cancer molecular subtypes, and patients with different ECM groups showed distinct prognosis. Immunological activity and ECM associated biology processes were identified by GO and KEGG analyses across ECM-high and -low groups. According to MCP-counter algorithm, the infiltration of T cells was significantly lower in the ECM-high group, while CAF abundance was significantly higher. It is furtherly confirmed by clinical samples that collagen density and organization were associate with breast cancer progression. Finally, in vitro 3D-cultured fibroblasts and T cells validated that the density and organization of collagen showed significant effects on CAF induction and T cell activation. CONCLUSION: Our study revealed a new mechanism of T cell immunosuppression and CAF induction, which could be of central importance for the breast cancer invasion and may constitute novel therapeutic targets to improve breast cancer outcomes.

19.
J Oncol ; 2021: 9988624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34580591

RESUMEN

INTRODUCTION: Knowledge of the effect of prior cancer on long-term survival outcomes for patients with nonmetastatic triple-negative breast cancer (TNBC) remained unclear. The aim of this study was to explore and identify the effectiveness of prior cancer on breast cancer-specific death (BCSD) and other cause-specific death (OCSD) in patients with nonmetastatic TNBC. MATERIALS AND METHODS: Data of 29,594 participants with nonmetastatic TNBC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2016. Prognostic predictors were identified by propensity score matching (PSM) analysis combined with univariate cumulative incidence function (CIF) and multivariate Fine and Gray competitive risk analyses. RESULTS: Among the women with nonmetastatic TNBC included in the unmatched cohort, a total of 5,375 (18.2%) subjects had prior cancers (P-TNBC) and 24,219 (81.8%) had no prior cancer (NP-TNBC). Patients with P-TNBC tended to have poorer BCSD (Gray's test, p=0.0131) and OCSD (Gray's test, p=0.0009) in comparison with those with NP-TNBC after PSM. However, the risk of BCSD (p=0.291) and OCSD (p=0.084) found no difference among P-TNBC patients with one prior cancer and two or more prior cancers after PSM. Additionally, subjects with younger age, advanced T stage, advanced N stage, and advanced differentiation grade tumors were likely to develop BCSD, whereas those with breast-conserving surgery (BCS), radiotherapy, or chemotherapy tended to have a lower incidence of BCSD. CONCLUSION: Our study demonstrated that prior cancer was related to the worse BCSD and OCSD rate and could be identified as a reliable survival predictor for patients with nonmetastatic TNBC. This study may provide some reference value for the treatment mode of TNBC patients with prior cancer in the future.

20.
J Photochem Photobiol B ; 222: 112280, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34375907

RESUMEN

Confocal Raman microspectral imaging (CRMI) has been used to detect the spectra-pathological features of ductal carcinoma in situ (DCIS) and lobular hyperplasia (LH) compared with the heathy (H) breast tissue. A total of 15-20 spectra were measured from healthy tissue, LH tissue, and DCIS tissue. One-way ANOVA and Tukey's honest significant difference (HSD) post hoc multiple tests were used to evaluate the peak intensity variations in all three tissue types. Besides that, linear discrimination analysis (LDA) algorithm was adopted in combination with principal component analysis (PCA) to classify the spectral features from tissues at different stages along the continuum to breast cancer. Moreover, by using the point-by-point scanning methodology, spectral datasets were obtained and reconstructed for further pathologic visualization by multivariate imaging methods, including K-mean clustering analysis (KCA) and PCA. Univariate imaging of individual Raman bands was also used to describe the differences in the distribution of specific molecular components in the scanning area. After a detailed spectral feature analysis from 800 to 1800 cm-1 and 2800 to 3000 cm-1 for all the three tissue types, the histopathological features were visualized based on the content and structural variations of lipids, proteins, phenylalanine, carotenoids and collagen, as well as the calcification phenomena. The results obtained not only allowed a detailed Raman spectroscopy-based understanding of the malignant transformation process of breast cancer, but also provided a solid spectral data support for developing Raman based breast cancer clinical diagnostic techniques.


Asunto(s)
Neoplasias de la Mama/patología , Microscopía Confocal/métodos , Espectrometría Raman , Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Análisis por Conglomerados , Análisis Discriminante , Progresión de la Enfermedad , Femenino , Humanos , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...